2. Второй слой подвыборки:
```python
model.add(layers.MaxPooling2D((2, 2)))
```
– Дополнительный слой подвыборки для дальнейшего уменьшения размерности данных.
Добавление полносвязных слоев (Fully Connected Layers)
После извлечения признаков из изображений с помощью сверточных и подвыборочных слоев, мы используем полносвязные слои (Dense) для классификации. Эти слои соединяют каждый нейрон предыдущего слоя с каждым нейроном текущего слоя.
1. Приведение данных в одномерный вид:
```python
model.add(layers.Flatten())
```
– Преобразование многомерного выхода сверточных слоев в одномерный вектор.
2. Первый полносвязный слой:
```python
model.add(layers.Dense(64, activation='relu'))
```
– 64 нейрона: Обучение нелинейным комбинациям признаков.
3. Выходной полносвязный слой:
```python
model.add(layers.Dense(10))
```
– 10 нейронов: Каждый нейрон соответствует одному классу из 10 в наборе данных CIFAR-10.
Построенная таким образом сеть состоит из нескольких сверточных слоев для извлечения признаков, слоев подвыборки для уменьшения размерности данных и полносвязных слоев для классификации. Эта архитектура позволяет эффективно решать задачу классификации изображений, выделяя важные признаки и обучаясь на их основе.
5. Построение простой рекуррентной нейронной сети для анализа временных рядов
– Задача: Прогнозирование цен на акции.
Для построения простой рекуррентной нейронной сети (RNN) для анализа временных рядов и прогнозирования цен на акции можно использовать библиотеку TensorFlow и её высокоуровневый интерфейс Keras. В этом примере мы рассмотрим, как использовать LSTM (Long Short-Term Memory) слои, которые являются разновидностью RNN, чтобы построить модель для прогнозирования цен на акции.
Шаги:
1. Импорт библиотек и модулей.
2. Подготовка данных.
3. Построение модели RNN.
4. Компиляция и обучение модели.
5. Оценка и тестирование модели.
Пример кода:
```python
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers, models
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Шаг 1: Импорт библиотек
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers, models
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Шаг 2: Подготовка данных