from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
# Шаг 2: Подготовка данных
# Загрузка данных. Предположим, что у нас есть CSV файл с текстами и метками настроений (0 – негативное, 1 – позитивное).
data = pd.read_csv('sentiment_data.csv')
# Пример структуры данных:
# text sentiment
# 0 This movie was great! 1
# 1 I did not like this movie. 0
# …
# Тексты и метки
texts = data['text'].values
labels = data['sentiment'].values
# Токенизация текстов
tokenizer = Tokenizer(num_words=10000) # Используем только 10,000 наиболее частотных слов
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
# Ограничение длины последовательностей (padding)
maxlen = 100 # Максимальная длина последовательности
X = pad_sequences(sequences, maxlen=maxlen)
# Разделение данных на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)
# Шаг 3: Построение модели LSTM
model = models.Sequential()
model.add(layers.Embedding(input_dim=10000, output_dim=128, input_length=maxlen))
model.add(layers.LSTM(128, return_sequences=True))
model.add(layers.LSTM(128, return_sequences=False))
model.add(layers.Dense(1, activation='sigmoid'))
# Шаг 4: Компиляция и обучение модели
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=10, batch_size=32,
validation_data=(X_test, y_test))
# Шаг 5: Оценка модели
loss, accuracy = model.evaluate(X_test, y_test, verbose=2)
print(f'\nТочность на тестовых данных: {accuracy}')
# Визуализация процесса обучения
plt.plot(history.history['accuracy'], label='Точность на обучающем наборе')
plt.plot(history.history['val_accuracy'], label='Точность на валидационном наборе')
plt.xlabel('Эпоха')
plt.ylabel('Точность')
plt.legend(loc='lower right')
plt.show()
```
Пояснение:
1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, pandas, matplotlib и другие.
2. Подготовка данных: Загрузка данных из CSV файла, содержащего тексты и метки настроений. Тексты токенизируются с использованием `Tokenizer`, и последовательности приводятся к одинаковой длине с помощью `pad_sequences`.
3. Построение модели LSTM: Модель строится с использованием слоя `Embedding` для преобразования токенов в плотные векторы, двух слоев LSTM для обработки последовательностей и одного полносвязного слоя для выдачи прогноза.
– Слой Embedding:
```python