Оценить:
 Рейтинг: 0

120 практических задач

Год написания книги
2024
Теги
<< 1 ... 10 11 12 13 14 15 16 17 18 ... 46 >>
На страницу:
14 из 46
Настройки чтения
Размер шрифта
Высота строк
Поля

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)

fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

def train(dataset, epochs):

for epoch in range(epochs):

for image_batch in dataset:

train_step(image_batch)

print(f'Эпоха {epoch + 1} завершена')

# Шаг 6: Обучение GAN

EPOCHS = 50

train(train_dataset, EPOCHS)

# Шаг 7: Генерация изображений

def generate_and_save_images(model, epoch, test_input):

predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4, 4))

for i in range(predictions.shape[0]):

plt.subplot(4, 4, i+1)

plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')

plt.axis('off')

plt.savefig(f'image_at_epoch_{epoch:04d}.png')

plt.show()

# Генерация изображений после обучения

noise = tf.random.normal([16, 100])

generate_and_save_images(generator, EPOCHS, noise)

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.

2. Подготовка данных: Загружаются данные MNIST и нормализуются в диапазоне [-1, 1]. Данные затем разделяются на батчи для обучения.

3. Построение генератора:

– Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 28x28 пикселей.

4. Построение дискриминатора:

– Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.

5. Построение GAN:

– Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей.

6. Обучение GAN:

– GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.

7. Генерация изображений:

– После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.

Этот пример демонстрирует, как создать простую GAN для генерации рукописных цифр из набора данных MNIST. Модель может быть улучшена за счет добавления дополнительных слоев, настройки гиперпараметров и использования более сложных архитектур.

8. Построение сложной GAN для генерации реалистичных изображений

– Задача: Генерация изображений лиц.

Для создания сложной генеративно-состязательной сети (GAN) для генерации реалистичных изображений лиц можно использовать библиотеку TensorFlow и Keras. Мы будем использовать улучшенную архитектуру GAN, известную как DCGAN (Deep Convolutional GAN), которая доказала свою эффективность в создании реалистичных изображений. Набор данных CelebA, содержащий фотографии лиц знаменитостей, является хорошим выбором для этой задачи.

Шаги:

1. Импорт библиотек и модулей.
<< 1 ... 10 11 12 13 14 15 16 17 18 ... 46 >>
На страницу:
14 из 46