и Сu
, координируясь с галогеном в алкилгалогенидах, способствуют его более легкому элиминированию:
Роль катализатора, как и растворителя, проявляется и в связи с более тонкими особенностями механизма реакции. Различают два основных механизма нуклеофильного замещения: мономолекулярный S
1 и бимолекулярный S
2. При мономолекулярном замещении процесс протекает в две стадии. На первой, более медленной, происходит диссоциация связи С-Х в молекуле субстрата, в результате чего образуются карбокатион и анион уходящей группы. На второй, быстрой стадии карбокатион соединяется с нуклеофилом с образованием конечного продукта замещения:
Поскольку на скорость-определяющей (лимитирующей) стадии в реакции занята только одна молекула субстрата, скорость всего процесса зависит лишь от концентрации субстрата и отвечает кинетическому уравнению первого порядка:
v = k [RX]
В отличие от этого при бимолекулярном замещении реакция протекает фактически в одну стадию: нуклеофил атакует углеродный атом субстрата с тыла, со стороны, противоположной той, где находится уходящая группа. Процесс образования новой связи и разрыв старой происходит синхронно, через рыхлое переходное состояние, в котором углеродный атом из состояния sp
переходит в уплощенное состояние, близкое к sp
-гибридизации:
Скорость всего процесса, как легко заметить, в этом случае должна зависеть от концентрации как субстрата, так и реагента и отвечать уравнению реакции второго порядка:
Cуществует три основных доказательства реализации S
1 или S
2 механизма:
1) кинетическая зависимость скорости реакции от концентрации либо одного субстрата (S
1-механизм), либо от концентрации и субстрата, и нуклеофила (S
2-механизм);
2) обращение или сохранение стереохимической конфигурации углеродного атома, у которого протекает замещение. В случае S
2-реакции, как видно из приведенной выше схемы, нуклеофил занимает место, противоположное тому, где находилась уходящая группа, а остальные связи углерода как бы выворачиваются подобно зонтику при сильном ветре. Если углеродный атом, несущий уходящую группу, в молекуле субстрата хиральный, т. е. все четыре заместителя в нем разные, продукт реакции изменяет знак вращения на обратный. Это явление, открытое латвийским ученым Вальденом в начале ХХ в., получило название вальденовского обращения. В случае S
1-механизма вальденовского обращения в чистом виде не наблюдается, так как промежуточный плоский карбокатион с одинаковой вероятностью может атаковаться нуклеофилом и с одной и с другой стороны:
Впрочем, и при S
1-механизме возможно частичное обращение конфигурации. Это бывает в тех случаях, когда карбокатион образует с анионом тесную йонную пару, т. е. уходящая группа не уходит от карбокатионного центра слишком далеко, тем самым в некоторой степени мешая нуклеофилу подойти к углеродному атому со своей стороны. Кроме того, нередки случаи, когда реакция замещения протекает параллельно по обоим механизмам, и это также выражается в частичном обращении стереохимической конфигурации;
3) характерная зависимость реакционной способности субстрата от строения углеводородного радикала R. При реализации S
1-механизма, чем разветвленнее радикал R, тем легче протекает реакция. Для S
2-реакций картина прямо противоположная.
В случае S
2-реакций разветвленность алкильного радикала создает трудности для подхода нуклеофила. В случае же S
1-реакций такой проблемы нет, поскольку три заместителя при карбокатионном центре располагаются в одной плоскости и серьезных стерических препятствий для подхода нуклеофила не создают. Но главное же заключается в том, что третичные карбокатионы устойчивее вторичных, а последние в свою очередь устойчивее первичных – следствие делокализации положительного заряда за счет +I-эффекта алкильных групп:
Это обстоятельство существенно снижает активационный барьер для алкилгалогенидов изостроения и направляет для них реакцию по S
1-пути. Практически всегда реагируют по S
1-механизму метоксиметилхлорид CH
OCH
Cl и аллилгалогениды СН
=СН-СН
-Х, которые образуют резонансно-стабилизированные карбокатионы:
То же самое относится к трифенилметилхлориду (тритилхлориду), дифенилметилхлориду (бензгидрилхлориду) и бензилхлориду, реакционная способность которых изменяется в следующей последовательности (бензилхлорид частично реагирует и по S
2-механизму, который для него, однако, не является главным):
(C
H
)
C-Cl > (C
H
)
CH-Cl > C
H
CH
-Cl >> CH
-Cl
Реакции нуклеофильного замещения у насыщенного атома углерода сопровождаются рядом побочных процессов. Один из них – отщепление галогеноводорода от алкилгалогенида или воды от спиртов. При таком элиминировании продуктом реакции становится алкен. Различают два механизма элиминирования: E2 и Е1. Е2-Механизм реализуется как синхронный процесс, скорость которого зависит как от концентрации субстрата, так и нуклеофила:
Особенно легко подвергаются E2-реакциям вторичные и третичные алкилгалогениды. Так, изопропилбромид при действии этилата натрия в этаноле дает лишь 20 % продукта замещения, пропилен же образуется с выходом 80 %.