Оценить:
 Рейтинг: 0

Века сквозь математику, или Как математики раз за разом мир вертели

Год написания книги
2024
Теги
<< 1 2 3 4 5 6 7 >>
На страницу:
3 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

/*При таком умножении очевидно, что коммутативность умножения (то есть то, что от перестановки мест сомножителей произведение не меняется) – штука дааааалеко не очевидная! Чтобы ее заметить, надо быть очень опытным писцом. Практически, математическое открытие!*/

Как писцы выбирали метод умножения – неизвестно. Почему на 16 приведен пример в папирусе с умножением на 10 и на 5 (а не 4 раза удвоение) – непонятно. Почему на 12 нельзя было умножить на (10+2) – непонятно. То есть, никакого четкого алгоритма в их действиях, вообще говоря, не было. Хорошо, что умножение – это вам не бином Ньютона, все не мытьем так катаньем получалось рано или поздно. В папирусах, собственно, ничего не объяснялось. Просто разбирались примеры. /*Делай так, и будет тебе счастье!*/

Рисунок 2.2: Пример на деление из папируса Ринда

/*А попробуйте сами для прикола произвести какие-нибудь умножения по-египетски. Ну, напирмер, 23 на 25. Спорим, в процессе вам волей-неволей захочется воскликнуть что-то типа: «Да, ёшкин кот, египетский бог!»*/

Обратите внимание также на закорючку в виде закрытого и запечатанного списка (возможно, именно она позднее трансформировалась в символ равенства) – она ставится перед ответом и означает, что вычисление, собственно, выполнено. Свиток запечатан, получите, распишитесь.

Ох, как же сложно все с делением! Вы же уже представили? Деление – операция обратная умножению. Т.е., например, надо вам поделить число 1120 на 80. (См. рисунок 2.2) Иными словами, вы должны подобрать множитель, который при умножении на 80 даст 1120. Подбираем. Умножаем 80 на 2 несколько раз. На 16 умножать смысла уже нет (т.к. получится 1280, что больше нужного нам 1120). На всякий случай умножаем и на 10 (потому что легко же!). Замечаем, что числа 800 и 320 из левой колонки дают нужный ответ 1120. Таким образом, результат деления 14. (Однако после знака "равно" писали все равно 1120. По форме записи пример на деление ничем не отличался от примера на умножение!)

Рисунок 2.3: Фрагмент Папируса Ринда.

Но самые заморочки начинались у египтян с дробями. Они признавали только дроби с числителем 1. Были и сложные дроби, которые составлялись как сумма нескольких обязательно разных простых дробей (с числителем 1). Сейчас такие дроби в математике так и называются "египетские дроби". Записывали они дроби в виде лунки над натуральным числом (фактически, только знаменатель, ведь числитель – всегда 1).

Соответственно, у египтян возникла совершенно отдельная задача – удвоение дробей. Т.к. они все умножения делали (или могли делать) через удвоение, то удвоение было очень базовой операцией. Научишься удваивать – научишься умножать дроби на любое натуральное число. Для удвоения дробей египтяне составляли таблицы.

Казалось бы, почему хуже, чем ?[5 - По правильному, по-египетски, сверху надо нарисовать "луночку", а не палочку – но палочку мне в нарисовать намного проще.] Почему нельзя оставить две дроби с одинаковым знаменателем? Это самое "хуже" возникает после нескольких удвоений. Если не переписывать дроби, то они нарастают и нарастают. А если переписывать (тогда старшая дробь старше), то в сумме дробей не становится слишком много.

Египетскими дробями мы, конечно, сейчас не пользуемся, но они продолжают волновать умы математиков. До сих пор в математике есть открытые (не доказанные и не опровергнутые) вопросы про египетские дроби. Самый известный пример – гипотеза Эрдёша-Штрауса, которая утверждает, что дробь вида ) можно представить в виде суммы ровно трех дробей с числителем 1.

/*

На самом деле, можно очень долго описывать, как считали древние египтяне. Потому что ведь нет ничего радостнее, чем наблюдать за чужими мучениями, а египтяне явно мучились со всеми этими арифметическими действиями. Если вам хочется познакомиться поближе со счетом древних египтян, можно начать с прекрасной, подробной и очень умной книжки по истории математики [7].

*/

Геометрия у египтян была прикладной арифметикой. Как были задачи для подсчета налогов, так были задачи для подсчета количества кирпичей, необходимых для строительства пирамиды. Задачи по поиску объемов, площадей.

У египтян были правильные формулы для вычисления площадей треугольников, прямоугольников, трапеций.

Площадь произвольного четырехугольника вычислялась по формуле: произведение полусумм противоположных сторон.

/*Кстати, задачка для любознательных. Докажите, что формула дает правильный ответ тогда и только тогда, когда четырехугольник— прямоугольник. */

Для вычисления площади круга использовали формулу , (здесь d – диаметр круга). Приближение, на самом деле, хорошее. По этому приближению выходит, что у них

Например, вавилоняне (которые знали побольше математики) использовали приближение а в древнекитайской математике приближение использовалось аж до начала 2 века нашей эры.

Объемы кубов, балок, цилиндров вычислялись правильно (площадь основания на высоту). Самая большая проблема была с переводом одних мер объема в другие. Правильно считали также объем пирамиды /*Ну, а куда им было деваться! Пирамиды были под прямым надзором президента, тьфу ты, фараона.*/ и даже объем усеченной пирамиды тоже считали правильно.

И – возможно, высшее достижение египтян в геометрии – с помощью натянутой веревки они умели строить прямые углы. Берем 12 одинаковых по длине веревок. Связываем между собой. Затем натягиваем так, чтобы получился треугольник со сторонами 3-4-5. Угол между 3 и 4 будет прямым. Правильным углом для постройки пирамиды.

Больше ничего геометрического с помощью каких-либо приборов египтяне не строили. Никогда ничего египтяне не доказывали. Собственно, вся египетская математика сводилась к громоздким арифметическим вычислениям – но и это уже не мало!

2.2

Древняя Месопотамия

Древняя Месопотамия, древний Вавилон, древние шумеры – речь идет примерно про одну и ту же географическую область, Междуречье (между двумя великими реками, Тигром и Евфратом), в основном эта область находится на территории современного Ирака. Область, которая на протяжении более, чем тысячелетия была ключевой в развитии (европейской) культуры. Именно здесь зародилась /*или, по крайней мере, так считается*/ первая письменность (шумерские глиняные таблички, на которых трехгранными клинышками высекали необходимые письмена). И здесь же были сделаны одни из первых математических открытий, известных нам сейчас. Математика (особенно, арифметика) древних вавилонян была на голову выше, чем математика древних египтян.

Математикой в Вавилоне занимались опять писцы, которые были в отличие от египтян, скорее не чиновниками, а жрецами, людьми духовными. Впрочем, в те времена, когда египетские фараоны приравнивались к богам, различие это было ускользающе малым. Найденные глинобитные дощечки с математическими знаниями также, как и в Египте, носят обучающий характер. А иногда – это явные "справочники" для вычислений, таблицы.

Эти самые глинобитные дощечки встречаются разных размеров. Бывают многометровые, явно обломанные (т.е. раньше было больше). А бывают размером чуть ли не с ноготь /*может, это шпоры?*/. В основном же – около одной странички.

Рисунок 2.4: Глиняная табличка Plimpton 322, содержит то, что позже назовут "пифагоровы тройки чисел".

Как древние шумеры считали? В записи чисел шумеры использовали более прогрессивную – позиционную – запись числа (т.е. значение знака зависит от его позиции). Записывали они в 60-ричной системе счета. Числа до 60 записывались в обычной 10-ной системе (1 – один "клинышек", 10 – один "уголок"). Но число 60 снова обозначается как 1 (большая единица), и счет начинается снова. Иногда цифру более высокого разряда писали крупнее, но это уж как получится. Таким образом, "уголок" может означать как 10, так и десять шестидесяток, т.е. 600. Может означать и 1060

,1060

,… В том числе, не только положительные, но и отрицательные степени записывались также. , т.е. записывается так же, как 10, одним "уголком". (Числа писали как мы, младшие разряды справа, старшие слева).

Например, 11 записываем "уголок-клинышек". А "клинышек-уголок" это уже значит, что "клинышек" выше разрядом, поэтому "клинышек-уголок" это 70.

Вся прелесть позиционной системы в том, что не надо выдумывать много цифр. Шумеры вот двумя символами обходились на все про все.

Для нас нет большой разницы, умножать 28 на 17, 280 на 17000 или же 2,8 на 0,17. (Надо только сообразить, куда ставить запятую или сколько приписывать нулей – т.е. надо понять порядок числа). Так же и для шумеров большой разницы не было. Правда, они использовали таблицу умножения от 1 до 59. /*Но вы же помните, что последние 10 тысяч лет объем мозга человека постоянно уменьшается? Каких-то 5 тысяч лет назад все грамотные люди держали в своей голове таблицу умножения 5959, сейчас же нельзя с уверенностью сказать, что современные люди помнят наизусть 78.*/

Вопрос с порядком числа в практических задачах обычно решается из контекста. Если мы говорим: "Я ее купил за 10", – то в зависимости от контекста (сумочка это, авторучка или квартира), мы понимаем, идет ли речь о тысячах рублей, рублях или миллионах. Так же вместо "2 324 рубля 35 копеек" мы, скорее всего скажем "Две-324-35", без указания разряда (тысячи), без добавления слов "рубли"/"копейки". Сложности с порядком чисел могли бы возникнуть в теоретических задачах, но их-то и не было!

Почему именно 60 основание системы счисления? Число уж больно удобное. Делится и на 2, и на 3, и на 4, и на 5, и на 6. И поэтому у вавилонян была именно такая денежная система. В одном таланте 60 мин. В одной мине 60 шекелей. Удобно делить деньги.

Именно остатки 60-ричной вавилонянской системы до сих пор присутствуют в нашем счете времени. В одном часе 60 минут. В одной минуте 60 секунд. То же и с углами (просто между углами и временем связь вообще напрямую).

Обратите внимание: древние египтяне писали натуральные числа, даже дробные числа, но никогда не писали 0. Вавилоняне тоже писали и натуральные числа, и дробные числа, но ни о каком "числе 0" они ничегошеньки не знали. Спустя тысячу лет после первых математических текстов они, наконец, сообразили, что хорошо бы в числе пропущенный разряд как-то обозначать. И спустя тысячу лет после первых математических изысканий, придумали значок, обозначающий пропущенный разряд. Придумали 0-цифру, но все еще не 0-число. (Теперь стало можно отличать 60

от 60

или же 60

+ 2 от 60

+ 2 · 60 и так далее).

/*Ноль – очень сложное число. Запомните эту мысль, она нам еще, возможно, встретится. Вычислять приближенно квадратные корни? Да легко! Решать в уме квадратные уравнения – дайте два. А вот до числа 0 не додумались ни египтяне, ни вавилоняне, ни позже древние греки, ни в средневековых арабских странах, где математика была на очень высоком уровне. Ноль в математике возник немногим ранее комплексных чисел! */

Рисунок 2.5: Реплика глиняной вавилонянской дощечки, выполнена студенткой Кравцовой Настей, слушавшей у меня курс «История математики в контексте истории культур»

Вавилоняне не делили числа. Когда надо было выполнить действие , они искали обратное к b и умножали его на a. Таблицы обратных чисел и таблицы умножения – доступны. Когда число не делилось нацело, пользовались его приближенными значениями. Например, это точное значение (здесь я в скобках записала одну вавилонянскую

60-ричную "цифру"). А это приближенное значение, но вполне хорошее приближение (, a . Погрешность менее 1%).

Что еще делали, кроме четырех основных арифметических операций? У вавилонян была таблица квадратных корней, таблица кубических корней, и (внезапно!) таблица корней уравнения x

+x=a. И всякие другие таблицы. Таблицы они вообще очень любили.

Но самое интересное: у вавилонян явно появились первые алгоритмы. Например, алгоритм вычисления корня из любого числа.
<< 1 2 3 4 5 6 7 >>
На страницу:
3 из 7