Оценить:
 Рейтинг: 0

ТЕПЛОВОЗЫ. Вехи непройденного пути. Издание второе, переработанное и дополненное

Год написания книги
2019
1 2 3 4 5 ... 7 >>
На страницу:
1 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля
ТЕПЛОВОЗЫ. Вехи непройденного пути. Издание второе, переработанное и дополненное
Евгений Лосев

Книга посвящена тепловозам с непосредственным приводом осей и компрессорной передачей. Написана простым доступным языком, содержит большое количество иллюстраций и справочного материала. Подробно описывается конструкция этих редких машин и их узлов, приводятся основные технические характеристики. Предназначена для специалистов тепловозной тяги и любителей железных дорог. Может быть полезна студентам железнодорожных учебных заведений и лицам, интересующимся историей железнодорожного транспорта.

ТЕПЛОВОЗЫ. Вехи непройденного пути

Издание второе, переработанное и дополненное

Евгений Лосев

Рецензенты А.Г. Иоффе, В.С. Руднев

Фото на обложке Tony Hisgett

© Евгений Лосев, 2019

ISBN 978-5-0050-9656-2

Создано в интеллектуальной издательской системе Ridero

ОТ АВТОРА

Уважаемый читатель!

Перед Вами книга о мало освещаемой в современной технической литературе странице истории тепловозостроения, представляющей почти забытые ныне типы тепловозов, в частности, тепловозы с непосредственным приводом движущих осей от двигателя внутреннего сгорания, которым свойственна простота конструкции и то, что теоретически они имеют самый высокий коэффициент полезного действия на ободе колёс из всех известных тепловых локомотивов. Поэтому конструкторы первых тепловозов не случайно стремились применить для них именно такой привод. Известно множество проектов, выполненных как в России, так и за рубежом, некоторые из которых воплотились в металл. Ряд спроектированных конструкций выглядели вполне работоспособными, однако технология производства первой половины прошлого столетия не позволяла их осуществить. Это, в частности, касается генераторов газа и дизель-компрессоров со свободно движущимися поршнями – оригинальных тепловых машин, которым посвящена отдельная глава. Позднее, уже в 50-х годах ХХ века во Франции и СССР были построены экспериментальные газотурбинные локомотивы со свободнопоршневыми генераторами газа. Эти локомотивы также описаны в данной книге.

В реальности эксплуатационный коэффициент полезного действия тепловозов с непосредственным приводом зачастую оказывался ниже, чем наиболее распространённых и хорошо известных сейчас тепловозов с электрической передачей. Это объясняется тем, что при непосредственном приводе дизель вступает в работу не сразу, а по достижении определённой скорости, развиваемой локомотивом, который до этого момента приводится в движение сжатым воздухом или паром[1 - Реже – каким-либо другим двигателем.]. Время работы тепловоза на этих малоэкономичных источниках энергии зависело от конкретных условий эксплуатации, но так или иначе это снижало коэффициент полезного действия тепловоза, особенно при разгоне паром. Разновидность тепловозов с непосредственным приводом, использующих для разгона пар, обычно выделяется в самостоятельный тип локомотива, известный как теплопаровоз. Основные различия описываемых в этой книге конструкций тепловозов с непосредственным приводом заключаются в способе трогания локомотива с места и его разгона. В основном своём варианте тепловозы с непосредственным приводом разгоняются при помощи сжатого воздуха, для чего на них устанавливается вспомогательный дизель-компрессор.

Вообще сжатый воздух как рабочее тело для привода в движение транспортных средств начал применяться гораздо раньше, чем появились первые тепловозы. Кроме того, на некоторых тепловозах, называемых компрессорными, привод сжатым воздухом – чистым или в смеси с паром или продуктами сгорания двигателя – являлся основным. Поэтому книга была бы неполной без описания первых пневмолокомотивов, а также компрессорных тепловозов.

И хотя большинство тепловозов с непосредственным приводом для трогания и разгона используют сжатый воздух или пар, известны также тепловозы, которые трогаются и разгоняются при помощи гидродинамических аппаратов. В этом случае привод содержит гидравлическое звено, используемое для трогания и разгона, и механическое, которое используется в диапазоне средних и высоких скоростей движения, причём в механической части отсутствует коробка скоростей; таким образом, получается тепловоз с постоянным соединением двигателя и движущих колёсных пар, т. е. с непосредственным приводом. Благодаря использованию гидравлических устройств для разгона, общий коэффициент полезного действия тепловоза, у которого непосредственный привод совмещён в одной конструкции с гидравлическим, может оказаться выше, чем тепловоза с непосредственным приводом, использующего для разгона сжатый воздух или пар. Примером простейшей конструкции такого типа является наличие гидромуфты, располагаемой между фланцем дизеля и отбойным валом тепловоза.

Написать эту книгу побудили научные изыскания, проведённые автором в 2013 – 2014 гг. при разработке двигателя внутреннего сгорания с регулируемым крутящим моментом[2 - В результате этих работ получено два патента.].

Именно тесная взаимосвязь между непосредственным и компрессорным приводом осей навела автора на мысль объединить эти два принципиально разных элемента силовой установки в единый агрегат, получивший название «Транспортный двигатель внутреннего сгорания с автоматическим регулированием крутящего момента». На базе этого двигателя разработана силовая установка, обладающая, по мнению автора, высокой теплотехнической эффективностью, что делает её перспективной для применения на тепловозах.

Название книги «Тепловозы. Вехи непройденного пути» как бы подчёркивает незавершённость того пути, по которому шли создатели чрезвычайно интересных локомотивов, описанных в данной книге, не получивших в своё время распространения на железных дорогах. Возможно, этот путь ещё предстоит пройти.

Чтобы дать читателю возможность получить более полное представление обо всех упомянутых локомотивах, автором предпринята попытка обобщить имеющийся в его распоряжении по этой теме довольно обширный, но разрозненный материал из различных печатных источников[3 - Этим объясняется большой объём книги.], многие из которых стали уже библиографической редкостью, дополнив его в конце книги собственными разработками. В этой заключительной части книги автор попытался по-новому взглянуть на проблему создания тепловоза с непосредственным приводом и с этой точки зрения показать возможные перспективы развития локомотивов этого типа.

Кое-что удалось найти в интернете. В большинстве своём это англоязычные сайты, которые автор перевёл на русский язык, чтобы эти материалы можно было поместить в книгу.

При описании конструкций тепловозов и их систем автор старался использовать современную терминологию, но иногда приходилось придерживаться оригинальной терминологии источника, как правило, для обозначения той или иной системы тепловоза так, как их называли сами конструкторы.

ВВЕДЕНИЕ

Если проследить более чем вековую историю тепловозостроения, то можно увидеть два направления его развития.

Стремясь к упрощению и удешевлению тепловоза, многие инженеры искали решения в непосредственном действии двигателя внутреннего сгорания на движущие колёса. Проектов тепловозов непосредственного действия и их разновидностей, в которых движущие колёса приводятся во вращение прямо от двигателя внутреннего сгорания или с помощью фрикционных муфт, выполнено большое количество, некоторые из них даже были реализованы в виде опытных машин. Однако в целом это направление распространения не получило, и тепловозостроение пошло по другому пути развития.

Сторонники другого направления занимались поиском пригодной для условий локомотивной службы комбинации уже испытанных агрегатов и хорошо известных конструктивных элементов. Инженеры, работавшие в этом направлении, исходили из существующих свойств первичного двигателя внутреннего сгорания и изыскивали возможности применения его для тяги поездов путём использования промежуточных передач – электрической, гидравлической, пневматической, зубчатой, смешанной, играющих роль трансформатора частоты вращения и крутящего момента, передаваемого двигателем внутреннего сгорания движущим осям. Наибольшее распространение во всём мире получила электрическая передача. Доля тепловозов с электрической передачей составляет около 80% общего парка дизельных локомотивов. В меньшей степени применяются гидравлическая, гидромеханическая и механическая передачи.

Первые магистральные тепловозы, появившиеся в России, также имели электрическую передачу, позднее к ним добавился тепловоз с механической передачей. Этому пути развития тепловозостроения положили начало русские инженеры – профессора Я. М. Гаккель и Ю. В. Ломоносов.

Чтобы понять, почему до сих пор не удалось создать работоспособный тепловоз с непосредственным приводом движущих осей, полностью отвечающий всем требованиям тяги, следует кратко остановиться на особенностях и вытекающих из них основных свойствах двигателей внутреннего сгорания.

Среди существующих тепловых машин двигатель внутреннего сгорания обладает самым высоким коэффициентом полезного действия (к. п. д.), поскольку при сгорании топлива внутри цилиндра достигается высокая температура в процессе подвода тепла к рабочему телу. При этом сам процесс сопровождается меньшими тепловыми потерями, чем в случае внешнего подвода тепла. Наибольшая тепловая эффективность достигается у двигателя с самовоспламенением от сжатия, называемого дизелем по имени его создателя Рудольфа Дизеля. В дизелях происходит наиболее экономичное сжигание топлива, что делает эти двигатели особо привлекательными для применения на локомотивах. Если в паровозах при всех теплотехнических мероприятиях, которые только можно было осуществить, не удалось поднять к. п. д. выше 9%, то современные дизели работают с к. п. д. более 40%.

Вместе с тем двигатель внутреннего сгорания не может быть приведён в действие при неподвижных поршнях и совершать работу при низких скоростях их перемещения. Для трогания поезда с места и его разгона до скорости, когда двигатель начинает работать самостоятельно, необходим посторонний источник энергии. Это является одной из причин того, что локомотивы с двигателями внутреннего сгорания должны иметь промежуточную передачу между дизелем и колёсными парами, что увеличивает стоимость локомотива и расходы по его содержанию и ремонту.

Другой причиной применения промежуточной передачи является то, что двигатель внутреннего сгорания не обладает достаточно гибкой внешней характеристикой, требующейся машине транспортного назначения. Это происходит потому, что особенности его рабочего процесса, вытекающие из постоянства среднего индикаторного давления во всём скоростном диапазоне, не позволяют изменять в широких пределах момент на валу отбора мощности при изменении частоты вращения вала. Чтобы расширить эти пределы требуется форсировать двигатель, что приводит к его перегрузке. Однако дизель не переносит большой перегрузки, так как в этом случае в рабочих цилиндрах развиваются чрезмерно высокие температуры и давления. Поэтому непосредственное соединение вала двигателя с движущими осями локомотива не обеспечивает регулирование силы тяги в необходимых пределах.

Неудачный опыт с самым первым магистральным дизельным локомотивом с непосредственным приводом – тепловозом Общества Diesel-Klose-Sulzer – заставил представителей этого направления искать пути изменения свойств двигателя внутреннего сгорания и создания цикла, пригодного для локомотива.

Попытки создания тепловоза с непосредственным приводом в России предпринимали В. И. Гриневецкий, А. И. Липец, И. Ф. Ядов, М. И. Пригоровский, Е. Е. Лонткевич, Г. К. Хлебников и ряд других изобретателей и учёных.

Осуществить непосредственную передачу вращающего момента дизеля на оси тепловоза пытались и в других странах. Однако построенные за границей тепловозы также оказались плохо приспособленными к требованиям эксплуатации. У опытных тепловозов этого типа при переходе машин на работу по циклу Дизеля происходили резкие взрывы, не хватало воздуха или пара на разгон и т. д.

У тепловоза с непосредственным приводом, использующим для трогания с места сжатый воздух или пар, степень экономического эффекта по сравнению с тепловозами, имеющими передачу, зависит от скорости, при которой получается устойчивый, надёжный процесс сгорания. Чем меньше эта скорость, тем меньший требуется вспомогательный дизель-компрессор или паровой котёл для разгона поезда, тем больший период времени двигатель тепловоза может работать по дизельному циклу с высоким коэффициентом полезного действия.

Электрическая и другие виды применяемых в настоящее время передач полностью устраняют все трудности пуска в ход и гарантируют в большей или меньшей степени необходимую эластичность тяговой характеристики. Но тепловозы с передачами имеют существенные недостатки, от которых избавлен только тепловоз с непосредственным приводом.

Отрицательные качества тепловозов с передачей заключаются главным образом в необходимости иметь две различные энергетические системы на одном локомотиве с меньшей последующей отдачей мощности на ободе колёс и в более сложном регулировании. Тепловоз с передачей при значительном увеличении веса локомотива требует больших расходов на техническое обслуживание, увеличения длительности простоев в цехах для ремонта с одновременным ростом числа заходов на ремонт, необходимости более широкого применения специализированного персонала. Всё это снижает экономическую эффективность локомотива в целом.

Тепловозы с непосредственным приводом лишены этих отрицательных качеств, но такие локомотивы трудно осуществить на практике именно из-за сложности приведения в движение дизеля под нагрузкой и его неспособностью тянуть поезд на низких скоростях и сообщать ему необходимое ускорение.

При электрической передаче повышение веса локомотива выражается примерно в 25%, а первоначальной стоимости – в 33%, при гидравлической передаче – в 10 и 20%, соответственно, при механической передаче – в 12 и 15%.

Совершенно естественно, поэтому, стремление устранить совсем это промежуточное звено и осуществить непосредственный привод, т. е. передавать вращающий момент от двигателя на колёса непосредственно, подобно тому, как это осуществляется на паровозе.

Всякая передача отнимает у двигателя какую-то долю его мощности, затрачиваемую на трение передаточных частей механизма и на покрытие других потерь.

Электрическая передача, обеспечивающая хорошие тяговые свойства, громоздка, обладает значительным весом, требует расхода дорогих и дефицитных цветных металлов (главным образом меди) и дополнительной затраты мощности. Так, потери мощности от выходного вала дизеля до движущих колёс составляет до 20% номинала из-за потерь в главном генераторе, тяговых электродвигателях и преобразователях, затрат мощности на системы возбуждения и вентиляции электрических машин. По этой причине снижается эксплуатационный к. п. д. тепловоза.

Неизбежный разброс электромеханических характеристик тяговых электродвигателей приводит к повышению вероятности перегрева наиболее нагруженных из них и преждевременному срыву сцепления колёсных пар, приводимых во вращение этими двигателями. Для предотвращения боксования приходится применять специальные противобоксовочные устройства. Таким образом, электрическая передача значительно усложняет конструкцию и увеличивает стоимость тепловоза, а также усложняет его эксплуатацию и ремонт.

Коэффициент полезного действия

электрической передачи тепловоза ТЭ3[4 - ПП, ОП1, ОП2 – ступени ослабления возбуждения тяговых электродвигателей.].

Ограничение габаритов и массы применяемых тяговых электрических машин при необходимости повышения агрегатной мощности и момента привело к увеличению нагрузки активных элементов тяговых электродвигателей и, как результат, к интенсификации вентиляции с целью обеспечить заданный ресурс.

Интенсификация вентиляции и использование конструкционных материалов, допускающих более высокие нагрузки, неизбежно ведёт к возрастанию затрат энергии на охлаждение при эксплуатации тягового электродвигателя и повышению его цены. С ростом секционной мощности энергетических установок тепловозов эти затраты возрастают с 1% – у тепловозов серий ТЭМ1 и ТЭМ2, до 4,5% и 6%, соответственно, – у тепловозов 2ТЭ116 и ТЭ136.

Анализ паспортных тяговых характеристик тепловозов с электрической передачей показывает, что мощность тепловоза ТЭ3 на ободе колёс составляет 77 ? 86% (в среднем 83%) от мощности, реализуемой на валу дизеля. У тепловозов 2ТЭ10 различных модификаций аналогичные показатели составляют, соответственно, 80 ? 87 (85) %, а у 2ТЭ116 – 82 ? 88 (87) %. Приведённые данные относятся к максимальным позициям контроллера машиниста (16-й у ТЭ3 и 15-й у 2ТЭ10 и 2ТЭ116)[5 - Сюда не включены относительные затраты мощности на вспомогательные нужды за исключением системы охлаждения тяговых электрических машин. Последние затраты учитываются потому, что являются неизбежными при электрической передаче и отсутствуют у тепловозов других систем, в том числе и с непосредственным приводом движущих осей. Поэтому можно считать, что эти данные соответствуют к. п. д. электропередачи с учётом затрат мощности на охлаждение тяговых электрических машин.].

Для сравнения интересно посмотреть данные, полученные из материалов испытаний тепловозов 2ТЭ10Л и 2ТЭ10В. Эти данные, приведённые в виде гистограмм частотных распределений потерь мощности в электрической передаче в реальных условиях работы тепловозов с учётом переменных режимов и переходных процессов в энергетической цепи, являются несколько завышенными, потому что из показанных потерь не выделены затраты мощности на вспомогательные нужды тепловоза.

Нивелируя эти неточности, можно обратить внимание на то, что паспортные и экспериментальные данные не противоречат друг другу. Таким образом, видно, что современные тепловозы с электрической передачей непроизводительно теряют 15 – 20% энергии, вырабатываемой дизелем, и, соответственно, примерно на эту же величину у них должен возрастать расход топлива по сравнению с тепловозами, имеющими непосредственный привод[6 - Конечно, при этом предполагается одинаковая экономичность тепловых двигателей тех и других тепловозов.].
1 2 3 4 5 ... 7 >>
На страницу:
1 из 7