Оценить:
 Рейтинг: 0

Турбовозы. История, теория, конструкция

Год написания книги
2020
<< 1 2 3 4 5 6 ... 14 >>
На страницу:
2 из 14
Настройки чтения
Размер шрифта
Высота строк
Поля

Чарльз Алджернон Парсонс.

Французский учёный Рато вывел комплексную теорию турбомашин на основе имевшегося опыта.

Газовые турбины. В ступенях этих лопаточных машин энергия сжатого и нагретого газа преобразуется в механическую работу на валу. Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок и парогазовых установок.

Англичанин Джон Барбер в 1791 г. впервые предложил идею создания газотурбинного двигателя с газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной.

Турбина Барбера могла работать на нефти, угле и древесине, что обеспечивалось путём их предварительной газификации (перегонки) в специальных ёмкостях в виде реторт. В схеме его газотурбинной установки кроме воздушного, был и газосжигательный компрессор. Смесь, образованную воздухом и газом, предлагалось нагнетать в камеру горения при помощи компрессора. После горения горючей смеси её предлагалось подавать с большой скоростью на лопатки рабочего колеса, на котором должна производиться работа расширения газа. Для предотвращения перегрева турбины от действия высоких температур предполагалось охлаждение продуктов горения впрыском воды в камеру горения.

Газотурбинная установка Джона Барбера. Рисунок из его патента.

Изобретение Барбера не было реализовано на практике. Первую в мире газовую реверсивную турбину сконструировал русский инженер и изобретатель Павел Дмитриевич Кузьминский в 1887 г. Его десятиступенчатая турбина работала на парогазовой смеси, получаемой в созданной им же в 1894 г. камере сгорания – «газопаророде». Кузьминский применил охлаждение камеры сгорания водой. Вода охлаждала стенки и затем поступала внутрь камеры. Подача воды снижала температуру и в то же время увеличивала массу газов, поступающих в турбину, что должно было повысить эффективность установки. В 1892 г. П. Д. Кузьминский испытал турбину и предложил её военному министерству в качестве двигателя для дирижабля его собственной конструкции. В 1895 г. Кузьминский предложил вариант газовой турбины более простой конструкции. Этот проект был осуществлён в 1897 г. на Петербургском патронном заводе, где была построена действующая газовая турбина, которую изобретатель готовил к показу на Всемирной выставке в Париже в 1900 г., однако не дожил до неё несколько месяцев.

Павел Дмитриевич Кузьминский.

Одновременно с Кузьминским опыты с газовой турбиной (в качестве перспективного двигателя для торпед) проводил также Чарлз Парсонс, однако вскоре пришёл к выводу, что имеющиеся сплавы из-за низкой жаропрочности не позволяют создать надёжный механизм, который приводился бы в движение струёй раскалённых газов либо парогазовой смесью, после чего сосредоточился на создании паровых турбин.

В 1872 г. в Германии инженером Штольце был получен патент на газовую турбину, названную им «огненной турбиной», которая содержала практически все основные узлы современной ГТУ с непрерывным процессом горения топлива в камере сгорания: осевой воздушный компрессор, воздухоподогреватель, совмещённый с камерой сгорания, и турбину. ГТУ была создана и рассчитана на получение мощности 200 л.с. при частоте вращения 2000 об/мин. Однако её испытания не были успешными и вместо 200 л.с. было получено только 20 л.с.

ГТУ Штольце с горением при постоянном давлении

(непрерывного горения).

1 – компрессор; 2 – нагреватель; 3 – реактивная турбина; 4 – газогенератор.

В 1906 г. французскими инженерами Арманго и Лемалем с участием профессора Рато была построена газовая турбина с подводом теплоты при постоянном давлении мощностью 400 л.с. (294 кВт). Установка имела двухступенчатый центробежный компрессор. Направляющие лопатки турбины имели водяное охлаждение, а вода из системы охлаждения подавалась в продукты сгорания керосина, снижая их температуру до 560°С. Турбина развивала мощность, немногим превышающую мощность компрессора, поэтому компрессор приводился от постороннего двигателя.

В том же 1906 г. русский инженер В. В. Караводин спроектировал, а в 1908 г. построил во Франции бескомпрессорный ГТД с четырьмя камерами прерывистого горения, или со сгоранием при постоянном объёме, и газовой турбиной. Мощность, затрачиваемая на сжатие воздуха в таких установках, существенно ниже, чем у газотурбинных установок постоянного давления. Турбина развивала мощность 1,6 л.с. (1,18 кВт) при 10000 об/мин, а эффективный к.п.д. достигал всего лишь 2%.

Газотурбинная установка В. В. Кароводина с горением при постоянном объёме (прерывистого горения).

1 – камера сгорания; 2 – всасывающий клапан; 3 – пружина; 4 – регулирующий винт хода клапана; 5 – свеча; 6 – газоход; 7 – сопло; 8 – колесо турбины.

Определённый прогресс в развитии газовых турбин постоянного объёма был обеспечен работами немецкого инженера Карла Гольцварта, который в 1908 г. предложил оригинальную конструкцию газовой турбины прерывистого горения. В 1910 г. швейцарской фирмой Brown Boveri эта установка была построена. Камера сгорания, сопла и колесо турбины охлаждались водой. Центробежный компрессор приводился в действие паровой турбиной, пар для которой получался как за счёт охлаждения камеры сгорания, так и за счёт теплоты выхлопных газов турбины. По сути, установка Гольцварта была одной из первых действующих парогазовых установок. В этой установке компрессор не имеет такого большого значения, как в газотурбинной установке непрерывного горения, так как горение происходит при постоянном объёме (при закрытых клапанах на входе и выходе из камеры сгорания) и поэтому давление в камере повышается сверх давления, развиваемого компрессором. Однако в целом установка получилась более сложной и дорогой, чем ГТУ непрерывного горения, поскольку для её работы требовались сложные клапанные устройства и паровая турбина с конденсатором. На этой установке была достигнута мощность 200 л.с. (147 кВт) при к.п.д. порядка 14%. Это наибольший к.п.д., который был получен в опытах с турбинами Гольцварта за период до 1927 г.

ГТУ прерывистого горения Гольцварта (с горением при постоянном

объёме), конструктивная схема.

1 – клапан подачи воздуха от компрессора; 2 – клапан подачи топлива; 3 – камера сгорания; 4 – клапан подачи продуктов сгорания к соплам; 5 – сопла; 6 – колесо турбины.

Начиная с 1908 г., по проектам Гольцварта было построено несколько ГТУ прерывистого горения. Поскольку в первые десятилетия прошлого века реализация таких ГТУ осуществлялась более успешно, чем ГТУ непрерывного горения, был накоплен положительный опыт, сыгравший благотворную роль в прогрессе газотурбостроения вообще. Так, в 1928 г. швейцарская фирма Brown Boveri возобновляет постройку ГТУ конструкции Гольцварта. Вскоре фирма получает заказ на разработку, а в 1939 г. приступает к изготовлению этих установок. К.п.д. таких установок оценивался на уровне 18—20%, максимальная мощность составляла 5000 л.с. Это время можно считать временем рождения первой промышленной стационарной газотурбинной установки. На основе накопленного опыта фирма Brown Boveri разработала и начала производство котлов типа «Велокс», горение в которых осуществлялось под давлением. Воздух в топку подавался компрессором, а приводила его в движение газовая турбина, работавшая на уходящих газах котла. Было выпущено большое количество таких котлов.

В 1936 г. В. М. Маковским был создан проект, а в 1940 г. Харьковским турбогенераторным заводом была изготовлена экспериментальная установка мощностью 735 кВт с начальной температурой газа 850°С. Турбина имела две ступени скорости. Рабочие лопатки приварены к диску. Корпус и ротор турбины охлаждались водой. Охлаждающая ротор вода специальным насосом подавалась через один конец полого вала, проходила через радиальные сверления и кольцевую полость в диске, а также через сообщающиеся между собой радиальные каналы в рабочих лопатках и отводилась через другой конец полого вала.

Газовая турбина В. М. Маковского.

1 – нижняя половина корпуса; 2 – опорно-упорный подшипник; 3 – корпус уплотнения; 4 – рабочее колесо турбины; 5 – сопловый аппарат; 6 – верхняя половина корпуса; 7 – экран; 8 – опорный подшипник; 9 – муфта.

Газотурбинная установка Маковского была установлена на руднике в Горловке (1941 г.). Топливом служил подземный газ, который подавался в камеру сгорания поршневым компрессором. Сюда же, в камеру сгорания, подавался необходимый для сгорания воздух под давлением 3—4 ата. Испытания показали, что газовая турбина может надёжно работать длительное время с начальной температурой газа 815°С при включённом охлаждении и с начальной температурой газа 600°С – при отключённом охлаждении. Создание установки В. М. Маковского дало много ценного материала для последующего строительства газотурбинных установок.

Первая советская газовая турбина, установленная на шахте «Подземгаз» в Горловке.

Если провести сравнение схем газотурбинных установок первых изобретателей, по которым были созданы опытные образцы, не показавшие положительных результатов, с современными газотурбинными установками, то можно увидеть, что принципиальных различий в них нет. Главные причины неудач в создании работоспособного и эффективного газотурбинного двигателя были связаны с аэродинамическим несовершенством компрессоров и турбин, а также отсутствием в то время жаропрочных сталей, способных работать длительное время в условиях высоких температур. Сыграло роль и отсутствие опыта создания систем охлаждения основных деталей и узлов газотурбинных установок.

1.2. Конструкция турбин

Паровые и газовые турбины – это тепловые расширительные турбомашины, в которых потенциальная энергия нагретого и сжатого пара (газа) при его расширении в лопаточном аппарате превращается в кинетическую энергию, а затем в механическую работу на вращающемся валу. К турбомашинам относятся и турбокомпрессоры, преобразующие механическую энергию, подводимую к валу, в потенциальную энергию сжатого воздуха (газа) при его торможении в лопаточном аппарате. Вращающиеся лопатки, закреплённые на роторе турбомашины, изменяют полную энтальпию рабочего тела, при этом производится положительная (в турбинах) или отрицательная (в компрессорах) работа.

Ступени осевой турбомашины образуют проточную часть. Процесс расширения в осевой турбине или сжатия в осевом компрессоре происходит в одной или нескольких ступенях. Ступень турбины – это совокупность неподвижного соплового аппарата, поворачивающего рабочее тело для придания потоку необходимого угла атаки по отношению к лопаткам рабочего колеса, и вращающегося рабочего колеса. Ступень компрессора – это совокупность вращающегося рабочего колеса и неподвижного спрямляющего аппарата.

В зависимости от характера расширения рабочего тела различают активные и реактивные ступени турбины. В активных ступенях потенциальная энергия пара (газа) преобразуется в кинетическую только в сопловых аппаратах, и кинетическая энергия используется для вращения рабочих лопаток. В реактивных ступенях расширение рабочего тела начинается в сопловом аппарате и продолжается в каналах рабочих лопаток, имеющих конфигурацию реактивного сопла. Полезная работа совершается в активной ступени только вследствие изменения направления потока рабочего тела, а в реактивной ещё благодаря силе рабочего тела в межлопаточных каналах.

Модель одной ступени паровой турбины. Автор фото dr. Kaboldy Pеter.

Турбомашины классифицируют по нескольким признакам.

По направлению движения потока рабочего тела различают аксиальные турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.

Осевая многоступенчатая турбина состоит из вращающегося ротора и неподвижного корпуса. Ротор несёт ряды закреплённых на нём рабочих лопаток. Перед каждым рядом рабочих лопаток в корпусе устанавливаются сопловые лопатки (в паровых турбинах их часто называют направляющими). Для уплотнения зазоров между ротором и корпусом применяются концевые и промежуточные уплотнения. Для подвода и отвода тепла служат соответственно входной и выходной патрубки либо в виде улиток, либо в виде кольцевых каналов.

Радиальная (центростремительная) турбина включает ротор и корпус. Ротор представляет собой рабочее колесо, несущее обычно изготавливаемые за одно целое с ним рабочие лопатки. Из входного патрубка (улитки) рабочее тело поступает в сопловой аппарат, а затем на рабочее колесо. Иногда сопловой аппарат выполняют без лопаток; в этом случае специально спрофилированная входная улитка служит безлопаточным сопловым аппаратом. Центробежный компрессор имеет аналогичные элементы.

На переднем конце вала ротора устанавливается предельный центробежный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12% сверх номинальной.

В турбоагрегатах традиционно применяется «тихоходный» – несколько оборотов в минуту – валоповорот. Валоповоротное устройство предназначено для медленного вращения ротора при пуске и останове турбины для предотвращения теплового искривления ротора.

Схемы основных типов турбин и турбокомпрессоров.

а – осевая турбина; б – центростремительная турбина; в – осевой компрессор; г – центробежный компрессор; 1 – ротор; 2 – входной патрубок (улитка); 3 – корпус; 4 – выходной патрубок (улитка); 5 – концевые уплотнения; 6 – подшипниковые узлы; 7 – промежуточные уплотнения; 8 – рабочая лопатка; 9 – сопловая лопатка; 10 – спрямляющая лопатка; 11 – лопаточный диффузор; 12 – безлопаточный диффузор.

На конструкцию паровой турбины влияют начальные параметры пара, режим её работы, конечная влажность пара, особенности технологии изготовления и другие факторы.

Для активных турбин характерно наличие перегородок-диафрагм, в которых располагаются неподвижные сопловые лопатки. Диафрагмы разделяют диски так, что две соседние диафрагмы образуют камеру, в которой располагается диск с рабочими лопатками. В реактивных паровых турбинах рабочие лопатки обычно крепят к ротору барабанного типа, а сопловые – к корпусу турбины или в обоймах.

Конденсационные турбины мощностью до 50 МВт, как правило, выполняются одноцилиндровыми. Цилиндр – это основной узел паровой турбины, в котором внутренняя энергия пара превращается в кинетическую энергию парового потока и далее – в механическую энергию ротора. Число венцов сопловых лопаток в каждом цилиндре паровой турбины равно числу венцов рабочих лопаток соответствующего ротора. Цилиндр турбины может быть однокорпусным и двухкорпусным.

Корпуса паровых турбин для удобства сборки и разборки обычно имеют разъём по горизонтальной плоскости. В одноцилиндровых турбинах корпус иногда имеет не только горизонтальный разъём, но и вертикальный, что облегчает его механическую обработку и транспортирование. При высоких рабочих давлениях цилиндры отливают из чугуна или стали, иногда эти цилиндры выполняют сварно-литыми. При низких давлениях корпуса цилиндров и выходные патрубки конденсационных турбин обычно изготавливают сварными из листовой углеродистой стали.

Роторы паровых турбин могут быть дисковыми или барабанными. Дисковая конструкция характерна для турбин активного типа, барабанная – реактивного.

В большинстве стационарных и транспортных паровых турбин применяются подшипники скольжения.

Схемы роторов паровых турбин.

а – дисковый; б – барабанный.
<< 1 2 3 4 5 6 ... 14 >>
На страницу:
2 из 14