Оценить:
 Рейтинг: 0

Турбовозы. История, теория, конструкция

Год написания книги
2020
<< 1 2 3 4 5 6 7 ... 14 >>
На страницу:
3 из 14
Настройки чтения
Размер шрифта
Высота строк
Поля

Конструкции ГТУ и ГТД и их узлов зависят от выбранной конструктивной схемы, т. е. взаимного расположения компрессоров, камер сгорания, турбин, воздухоохладителей и регенераторов.

По числу валов, связанных общностью теплового процесса или общей зубчатой передачей (редуктором), различают одновальные, двухвальные, реже трёхвальные ГТД. Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.

По простейшей одновальной схеме без регенератора выполняют энергетические пиковые ГТУ и ГТУ вспомогательного назначения, приводящие электрогенератор. По этой же схеме был выполнен ГТД первого отечественного газотурбовоза и многие авиационные турбореактивные двигатели. Для транспортных ГТД сравнительно малой мощности (до 1—1,5 МВт), например, автомобильных, характерна двухвальная конструктивная схема. По этой же схеме изготовляют пиковые (без регенерации) и базовые энергетические (с регенерацией) ГТУ.

Трехвальную схему применяют для транспортных ГТД большой мощности (свыше 5 МВт), например, судовых и пиковых, аварийных стационарных энергетических ГТУ, если в качестве газогенератора (блоков компрессоров и турбин высокого и низкого давления) используется авиационный реактивный двигатель, сопло которого заменено на диффузорный патрубок с силовой турбиной. По двухвальной схеме с блокированной турбиной нагрузки могут выполняться базовые стационарные энергетические ГТУ большой мощности.

ГТУ с одновальным турбокомпрессором с отбором воздуха или газа встраиваются в технологические процессы химических, нефтеперерабатывающих и металлургических производств.

Конструкции узлов стационарных, транспортных и авиационных ГТД и ГТУ достаточно разнообразны.

Корпуса узлов мощных стационарных и многих транспортных ГТУ обычно выполняются разъёмными по горизонтальной плоскости.

Среди судовых ГТУ наибольшее применение находят лёгкие прямоточные установки. ГТД состоит из воздухозаборника, компрессора низкого давления (КНД), компрессора высокого давления (КВД), камеры сгорания, турбин высокого (ТВД), среднего (ТСД) и низкого давления (ТНД). ТВД приводит во вращение КВД, ТСД – КНД, ТНД работает на винт. Вал КНД и ТСД проходит внутри вала КВД и ТВД (конструкция «вал в валу»). Мощность ТНД передаётся винту через рессору и редуктор. Роторы всех трёх турбин имеют разную частоту вращения. Для передачи мощности от пусковых электродвигателей и для привода расположенных на корпусе двигателя механизмов служат передняя и основная коробки приводов. Маслоагрегат также получает мощность от вала компрессора. Все элементы ГТД смонтированы на общей раме. Кожух газоотводного патрубка сообщается с кожухом двигателя. Окружающий воздух эжектируется отработавшими газами и, проходя между кожухом и корпусом двигателя, охлаждает их.

Схема судового ГТД прямоточного типа.

1 – воздухозаборник; 2 – передняя коробка привода; 3 – задняя коробка привода; 4 – КНД; 5 – КВД; 6 – камера сгорания; 7 – ТВД; 8 – ТСД; 9 – кожух двигателя; 10 – ТНД; 11 – газоотводный патрубок; 12 – кожух газоотводного патрубка; 13 – рессора; 14 – редуктор; 15 – маслоагрегат; 16 – рама.

В судовых и стационарных ГТУ прямоточного типа имеется возможность дальнейшего увеличения температуры газа при одновременном повышении степени увеличения давления в компрессоре, и соответственно к.п.д. установки. Для применения высоких температур газа необходимо вводить интенсивное охлаждение проточной части и, в первую очередь, лопаток, поскольку жаропрочность металлических сплавов ограничена. В настоящее время практически ни одна ГТУ (или ГТД) не выполняется без охлаждения лопаток.

Газотурбинная установка замкнутого цикла (ЗГТУ) включает газоохладитель, понижающий температуру до начального значения и регенератор. Вместо камеры сгорания в ЗГТУ устанавливается подогреватель, в котором рабочее тело (обычно воздух) не смешивается с продуктами сгорания топлива.

Каждая газотурбинная установка обеспечивается рядом систем, относимых к вспомогательным, без которых, однако, работа установки невозможна. К ним относятся система смазки, обеспечивающей работу подшипников и редукторов, система регулирования, в которую можно включить и топливную систему, обеспечивающие устойчивую и надёжную работу установки на любом расчётном режиме от холостого хода до номинальной нагрузки, а также на режимах пуска и останова, система очистки воздуха и шумоглушения, а также система пуска установки. Важнейшую роль в обеспечении надёжной и высокоэкономичной работы газотурбинных установок играет система охлаждения или тепловой защиты установки, которая по сути состоит из ряда автономных систем, охлаждающих наиболее горячие и напряжённые детали и узлы установки и поддерживающих расчётный уровень термонапряжённого состояния деталей.

Глава II

ЛОКОМОТИВЫ С ПАРОВЫМИ ТУРБИНАМИ

2.1. Общие сведения

Применение паровой машины в качестве локомотивного двигателя серьёзно затрудняло конструкторам решение задачи улучшения как ходовых, так и тягово-теплотехнических свойств паровоза.

Суть в том, что:

– во-первых, поршневая машина является источником значительных сил инерции, обуславливающих своеобразные, весьма нежелательные «подёргивания» и «виляния» паровоза на ходу;

– во-вторых, преобразование прямолинейного движения поршня машины во вращательное движение колёс требует применения шатунно-кривошипного механизма, являющегося в свою очередь источником возникновения вредных, а при известных условиях – опасных для движущегося поезда динамических воздействий на железнодорожный путь, причём надлежащее уравновешивание возвратно-движущихся масс по мере возрастания ходовых скоростей паровоза становится всё менее достижимым;

– в-третьих, использование мощности паровозной машины ограничивается в силу конструктивных особенностей шатунной передачи величиной примерно 700—800 л.с. на одну движущую ось. Иначе говоря, от обычного паровоза, например, с пятью движущими осями в одной раме, можно получить не более 3500—4000 л.с., а с четырьмя осями – ещё меньше;

– в-четвёртых, поршневая машина плохо приспособлена для работы с высоким давлением и температурой перегрева пара, главным образом из-за смазки, уплотнений и т. д. Между тем, перегрев пара наиболее важен для повышения тягово-теплотехнической эффективности парового локомотива.

Преимущество паровой турбины перед поршневой паровой машиной, состоящее в экономии топлива, заставило подумать о применении турбины на паровозе. На протяжении ряда лет стремились добиться уменьшения расхода топлива паровозами путём перегрева пара и подогрева питательной воды (выходящими газами), но применение конденсации пара, которое может значительно увеличить коэффициент полезного действия паровой установки, по-видимому, возможно только при замене поршневой машины турбиной, достаточно простой в передаче работы и реверсирования и вполне применимой как тяговый двигатель локомотива, поскольку использование достаточно глубокого вакуума, возможное при цилиндрах большого объёма, при габаритных ограничениях в поршневом паровозе достигнуто быть не могло. Поэтому в различных странах были построены принципиально новые локомотивы, у которых паровая машина заменена паровой турбиной. Эти локомотивы получили название паротурбовозов.

Для возможности повысить к.п.д. современных паровозов и сравнения их в смысле экономичности с машинами стационарных установок необходимо применить принцип конденсации отработанного пара и механической тяги воздуха.

Этот вопрос в обыкновенных паровозах разрешается применением конденсационных тендеров и имеет главнейшим назначением уменьшение расхода воды. С другой стороны, конденсация мятого пара требует применения цилиндров больших размеров для повышения степени расширения, которые не всегда могут поместиться в габарите, что ограничивает возможность её применения.

Поэтому конденсационную установку на паровозе обычно осуществляют одновременно с заменой поршневой машины турбиной, причём:

1) к.п.д. значительно повышается и расход угля падает;

2) конденсат – почти чистая дистиллированная вода – идёт в котёл; следовательно, получается замкнутый цикл, при этом накипь почти исчезает, и, таким образом, увеличивается срок службы котла и уменьшается его ремонт;

3) расход воды резко уменьшается;

4) перегрев пара может быть весьма повышен, так как нет трущихся частей, соприкасающихся с паром;

5) турбовоз лучше уравновешен и поэтому динамическое воздействие на путь уменьшается;

6) тяга воздуха происходит равномернее;

7) сила тяги при трогании с места и, вообще, при наибольших отсечках в турбинах больше, чем при поршневых машинах вследствие лучшего коэффициента сцепления, обусловленного наличием постоянного крутящего момента.

Вот почему научно-техническая и изобретательская мысль усиленно работала в направлении создания парового локомотива с другим первичным двигателем, свободным от указанных недостатков поршневой машины, каким и оказалась паровая турбина.

Осуществление рационального турбовоза зависит от удачного решения вопроса о конденсаторах, которых предложено несколько конструкций:

а) с охлаждением непосредственно воздухом;

б) с охлаждением водой, причём для конденсации используется скрытая теплота испарения воды;

в) обыкновенные водяные конденсаторы.

В общем, наиболее пригодным можно считать поверхностный конденсатор с испарителем.

Турбинный агрегат с конденсацией, обладая рядом больших преимуществ, – равномерным крутящим моментом, большой силой тяги при трогании с места, быстрым разгоном, полным уравновешиванием и питанием котла конденсатом, – требует однако добавочных устройств для передачи, обратного хода, вспомогательных механизмов и конденсации.

Как показывает изучение энтропийных диаграмм, увеличение давления пара даёт благоприятные результаты в связи с увеличением его температуры. В турбинах применение высокого давления не встречает затруднений.

Фактически турболокомотивы впервые появляются в тех странах, которые или должны привозить уголь из-за границы (Швеция, Швейцария), или которые благодаря низкому экономическому уровню должны прибегать к исключительной бережливости (Германия 20-х годов прошлого века).

В находившихся в то время в эксплуатации турболокомотивах господствовало большое разнообразие как относительно общей конструкции, так и относительно передачи[1 - Первый турболокомотив был построен в Италии в 1908 г. Будучи неконденсационным, он мало отличался от обычного паровоза и потому не получил распространения. В период после первой мировой войны турболокомотивы начинают строиться в Швеции (Юнгстрем, Юнгстрем Байер, Юнгстрем Нидквист и Гольм, Юнгстрем неконденсационный), в Германии (Крупп-Цёлли, Маффей (1924), Геншель, Геншель – комбинированный), в Швейцарии (Цёлли), в Англии (Рэмси, Рейд-Маклауд), За исключением электропередачи в локомотиве Рэмси все остальные имеют механическую зубчатую передачу. В качестве сцепного веса в некоторых турболокомотивах используется вес тендера, в других вес главного экипажа. В турболокомотиве Рейд-Маклауд и Геншель (комбиннрованный) используется вес тендера и самого локомотива. Примечание А.А Чиркова.].

Наряду с чисто турболокомотивами (Цёлли, Крупп, Юнгстрем, Маффей, Рейд-Маклауд) имелся ещё турбоэлектровоз постройки Рэмси; Геншелем реализована комбинация поршневой машины с турбиной мятого пара в роли бустера тендера. Характеристики паротурбовозов типа 1—4—0 системы Юнгстрема, построенных в Швеции, типа 2—3—1 (Цёлли, Круппа и Маффея) – в Германии и типа 3—4—3 (Балдвина) – в США приведены в нижеследующей таблице.

Передача усилия от турбин к движущим осям в большинстве перечисленных выше паротурбовозов осуществлялась при помощи зубчатого редуктора, в котором по условиям эксплуатации локомотива на переменном профиле пути требовалось большое количество ступеней (пар зубчатых колёс). Для создания более гибкого управления локомотивом передача усилия от турбины к движущим осям была осуществлена с помощью электрического привода. Получился новый вид локомотива – паротурбовоз с электрической передачей.

Этот локомотив типа 2—4+2—4—2 с восемью движущими осями обладал большим весом, сложным оборудованием и мог совершать пробеги около 1000 км без набора топлива.

Несмотря на хорошие тяговые качества паротурбовоз с электрической передачей не получил распространения из-за высокой начальной стоимости, низкого коэффициента полезного действия и сложности ремонта.

В распоряжении конструкторов, посвятивших себя постройке турболокомотивов, имелся опытный и конструктивный материал лишь стационарных и судовых турбинных установок. Однако проблема установки тяговой турбины на локомотиве значительно сложнее из-за затруднений, вызываемых весовыми и габаритными предельными нормами,накладывающими ряд ограничений. Кроме того, эта задача затруднена теми особыми требованиями, которые предъявляла эксплуатация к новым конструкциям. Турбина в качестве тяговой машины локомотива вполне удовлетворяла эксплуатационным условиям, при которых скорости и мощности подвержены сильным колебаниям, кроме того она удовлетворяла также требованию реализации большого крутящего момента при трогании с места.

Наибольший вращающий момент паровой турбины при пуске в два раза превышает нормальный, так что турбовоз в этом отношении подобен паровозу. Расход пара вначале очень велик, но быстро падает с увеличением частоты вращения. Для реализации большого крутящего момента необходимо соответственно большое количество пара, которое, проходя через турбину, при стоящих неподвижно венцах, лишь дросселируется, на производя внешней работы.

Благодаря этому происходит очень быстрый прогрев ротора и корпуса турбины, причём температурные напряжения не появляются благодаря тому, что отвод тепла происходит достаточно легко через поверхность частей турбины, омываемых паром, имеющих большой вес.
<< 1 2 3 4 5 6 7 ... 14 >>
На страницу:
3 из 14