Оценить:
 Рейтинг: 0

Использование ускорителей и явлений столкновения элементарных частиц с энергией высокого порядка для генерации электрической энергии. Проект «Электрон». Монография

<< 1 2 3 4 5 6 >>
На страницу:
4 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

И наконец, можно было смело утверждать, что всё в этой вселенной от планет и звёзд, до нас с Вами, до всего, что видит глаз состоит из атомов, но насколько верным было это утверждение? И возможно, учёным предстояло найти и другие частицы…

Изображения к 1 главе

Рис. 1.1. Демокрит – один из первых авторов идеи атомизма

Рис. 1.2. Левкипп – один из первых людей, поддержавших и развивавших атомизм

Рис. 1.3. Эпикур – философ, вложивший большой вклад в теорию атомизма

Рис. 1.4. Платон – предполагал, что атомы имеют формы платоновских тел

Рис. 1.5. Абу Райхан Беруни – являлся сторонником атомизма и полагал, что атом также делим, но не бесконечно

Рис. 1.6. Абу Али ибн Хусейн ибн Абдаллах ибн Сина – также известен как Авиценна, сторонник теории атомизма

Рис. 1.7. Пьер Гассенди – возродил идею атомизма

Рис. 1.8. Роберт Бойль – учёный защитивший атомизм в своей выдающейся работе «Скептический химик»

Рис. 1.9. Исаак Ньютон – великий учёный, также ставший сторонником атомизма

Рис. 1.10. Джон Дальтон – один из первых сторонников возрождения атомизма, а также создатель одной из первых таблиц по классификации

Рис. 1.11. Таблица Дальтона

Рис. 1.12. Уильям Праут – полагал, что всё в мире состоит из водорода

Рис. 1.13. Станислао Канниццаро – предложил обозначать химические элементы их латинскими наименованиями, введя современную символику

Рис. 1.14. Роберт Броун – первооткрыватель Броуновского движения

Рис. 1.15. Периодическая система Дмитрия Ивановича – то, что некогда хотел создать Дальтон

Рис. 1.16. Рихард Зигмонди – изобретатель ультрамикроскопа

Рис. 1.17. Жан Перрен – человек, доказавший существование атомов определив их вес

Глава 2. Внутри атома и особенности ядра

Атом долгое время считали неделимым, само его название означает «неделимый», но со временем, всё же пришлось согласится с тем фактом, что атом делим и имеет структуру, не смотря на то, что прошло достаточно много времени. Описание дальнейших ступеней развития физики атомного ядра и элементарных частиц тесно граничит с разными математическими операциями, подробные описания которых уже не будут приведены, как и многие упрощения к общим теориям, что сильно увеличило бы объём информации, а некоторые «азы» уже были описаны в предыдущей вводной главе. В данной же главе будут описываться явления радиоактивности с использованием анализа при помощи полного математического аппарата.

Мир элементарных частиц, микрообъектов и квантов удивителен по своему строению, образу существования и законам. Познавая структуру материи, неизбежно приходится принять тот факт, что структура любой материи в близи сама по себе представляет собой отдельный мир, как уже говорилось. Сегодня уже широко известна теория атомизма, которая полагала, что все на свете состоит из мельчайших частиц – атомов. И если впервые эти идеи начинались еще со времен Левкиппа, Платона, Аристотеля и многих других ученых древности, во времена которых эти мысли в основном не выходили за пределы философских умозаключений. Впрочем, как во времена таких великих ученых как Абу Райхан Бируни, Абу Али ибн Сина, Аль-Хорезми, Ахмад Аль-Хорезми и других ученых Востока.

Так было даже время, когда атомизм даже был запрещен. И наконец, когда сам сэр Исаак Ньютон наряду с другими учёными защитил эту грандиозную идею, ее начали признавать и начались активные исследования в этой области. Но для полной победы и доказательства действительности существования атомов, нужно было предъявить какие-либо экспериментальные доказательства. Многие ученые как Джон Дальтон, Дмитрий Иванович Менделеев, Жан Перрен и многие другие пытались провести этот эксперимент, пока наконец, Жан Перрен не провел свой эксперимент с гуммигутовой эмульсией. Проведя аналогию изменения числа частичек гуммигута с изменением атмосферного давления по высоте, Перрен смог впервые определить вес атома.

А после того, как атом полностью был признан существующей частицей, начались работы по определению его структуры. И теперь после ряда исследований и экспериментальных подтверждений таких гениальных ученых экспериментаторов и теоретиков как Джон Томпсон, Эрнест Резерфорд, Нильс Бор и многих других была определена структура атома. И сегодня доказано не только при помощи косвенных экспериментов, но и с помощью прямых экспериментальных доказательств, ярким примером которых является сегодня наличие настоящей фотографии атома, что атом имеет четкую и ясную структуру.

Но как же можно прийти к этой структуре? На этом вопросе стоит остановится несколько более подробно. Как известно, все объекты электризуются, обмениваются зарядами, но где же они расположены? Если зарядами обладают все тела, в том числе и диэлектрики (хоть и малыми), следовательно, заряды имеются в структуре вещества. Вещество как уже было доказано состоит из молекул, а те из атомов, следовательно, заряды находятся внутри атомов.

И история открытия структуры атома начинается в 1897 году, когда Джозеф Джон Томпсон открывает электроны, при изучении электрического тока в газах. То есть когда в трубке, в которой имелись два электрода – катод и анод пропускался ток, то катод испускал некоторые лучи, так называемые «катодные лучи», честь точного определения типа этих лучей и принадлежит господину Томпсону, который отклоняя их в магнитном поле, а также ускоряя в электрическом поле, установил, что это ничто иное как некоторые частицы, испускаемые катодом, с отрицательным электрическим зарядом, благодаря чему они и были названы электронами.

Рис. 2.1. Джозеф Джон Томпсон

И последующие изучения привели к выводу, что электроны являются частью атома и когда они вылетают под действием электрического поля, это приводит к превращению атома в ион. Но обычный атом электрически нейтрален, следовательно, чтобы уравновешивать этот заряд в атоме должна быть часть с положительным зарядом. То есть атом состоит из зарядов, которые каким-то образом взаимодействуют. Как представляется это взаимодействие и является ли это взаимодействие объяснением поведения атомов в химических реакциях, в реакциях с поглощением и излучением света с определёнными длинами волн. Ведь атомы вполне могут быть источниками света, тот же разряженный газ излучает свет с определёнными спектрами, на строгих длинах волн и как это объясняется при помощи этих взаимодействий?

Чтобы это объяснить в 1902 году, господин Уильям Томпсон, более известный как Лорд Кельвин, предложил свою модель строение атома, а уже Джон Томпсон её исследовал более подробно, поэтому эта модель известна как модель Томпсонов. Эта модель была популярна до 1904 года и более известна как «модель пудинга с изюмом». По этой модели атом полностью состоит из положительной материи, а внутри неё находятся электроны, свободно перемещаясь. И при помощи этой модели, вполне получалось описывать некоторые результаты.

Рис. 2.2. Уильям Томпсон или Лорд Кельвин

Рис. 2.3. Модель атома водорода по модели Томпсонов

К примеру, можно описать атом водорода. Если представить в такой модели атом водорода, то электрон будет «плавать» в положительном заряде, но его будет тянуть к центру этой положительной «капле», благодаря силе электростатического равновесия. Если допустить, что электрон отходит от центра на некоторый радиус, меньший радиуса самого атома, то его будет притягивает мысленная сфера, образуемая этим радиусом. Но поскольку он заряжен равномерно, то его можно сконцентрировать в центре и просто записать по формуле Кулона (2.1).

А для определения заряда мнимой сферы, образуемой внутри общего большого заряда, можно использовать отношение этой мнимой сферы ко всей сфере, а поскольку заряд общей сферы уже известен и равен с зарядом электрона, чтобы атом был нейтрален, то и получается выражение (2.2), где и выводится заряд мнимой сферы.

И если уже подставить это значение под силу Кулона, получается (2.3), довольно интересное выражение, которое прямо пропорционально расстоянию, на которое отдаляется электрон от центра.

Также для дальнейшего удобства здесь можно ввести понятие, что коэффициент вне радиуса мнимой сферы, это колебательная жёсткость (2.4), а если записывать с этой жёсткостью уже не саму формулу силы Кулона, а его проекцию на радиус мнимой сферы, то получится выражение (2.5), причём отрицательный, за счёт того, что вектор силы и само расстояние (направление электрона) противоположны.

А теперь, если предположить, что электрон таким образом колеблется, то это напоминает конструкцию осциллятора или точнее математического маятника со своей жёсткостью и частотой, определяемой по (2.6).

И если подставить под (2.6) необходимую жёсткость, а в качестве массы взять массу электрона, то частота будет иметь порядок оптических волн. То есть атом светится в видимой области и даже эффект свечения можно объяснить при помощи модели Томпсона, но увы, тут возникла иная проблема. Даже если допустить, что атом водорода светится, то по этой модели он светится лишь с 1 частотой, когда как в реальности он испускает свет с 4 частотами. Так было доказано, что модель Томпсонов не верна и было необходимо создать новые модели.

Следующей моделью является модель Эрнеста Резерфорда 1908—1910 годов, который облучая металлические пластины тонкой золотой фольги радиоактивными излучениями, или точнее особыми альфа-частицами. При этом, если убрать пластинку на круговом экране (люминофоре, который светился), возникала точка, когда же ставилась пластина, то эта точка рассеивалась образуя пятно, но кроме того, часть этих лучей отражалась более чем на 90 градусов (прямой угол). И если предположить, что атом состоит так как предполагались Томпсоны, то из-за такого просто огромного «размазанного» положительного заряда на размер атома, отклонение не должно было превышать сотые доли градуса, а здесь было отклонение почти на 180 градусов.

Тогда Резерфорд и предположил, что для удовлетворения результатам эксперимента, нужно предположить, что положительный заряд сильно сконцентрировать в малой области, а всё оставшееся пространство практически пустует, поэтому частицы лишь немного рассеивались под действием электрического поля или же наталкивались на электроны, которые просто вращались вокруг атомного ядра. Именно так Резерфорд впервые и создал планетарную модель атома, по которой внутри имеется единое ядро, а вокруг него вращаются уже электроны по своим орбитам. Правда следовало ещё многое доказать, к примеру, почему электроны не падали атом, тратя свою энергию на вращение, излучая при этом энергию?

Но и на этот вопрос нашёлся ответ, благодаря коллеге Резерфорда – Нильсу Бору, который и создал модель атома водорода Бора, по его модели принимались некоторые постулаты. А именно утверждения того, что электрон не излучает энергию находясь на стационарных орбитах и могут выделять энергию в виде электромагнитного излучения (фотонов или частиц света) лишь при переходе из одной орбиты на другую, причём строго с той энергией, какой равняется разность энергии на этих двух орбитах. Из этого уже вытекало утверждение о квантовании энергии, то есть об оперировании с энергией, частицами, другими их параметрами только в виде порций. То есть не может быть плавного перехода, электрон либо он здесь есть, либо его здесь нет, либо он выделил определённое количество энергии, либо не выделил. Эта идея также поддерживалась ещё Максом Планком при изучении «совершенно чёрного тела», темы которая объясняла бы свечение при нагревании объектов.

Рис. 2.4. Эрнест Резерфорд

Рис. 2.5. Нильс Бор

Так при нагревании объектов часть энергии от столкновения атомов перетекает к ядру, а после передачи её электрону и переходу его на другой энергетический уровень, а затем обратно, наблюдается выделение фотона с определённой длиной волны, поэтому при нагревании тел они излучают свет. А уже при попадании на атом фотона внешнего, также наблюдается выход через переход электрона, но уже с более большой длиной волны и соответственно, меньшей частотой, благодаря чему и наблюдается такое явление как поглощение и отражение света. Что же касается прохода альфа-частиц при бомбардировке Резерфордом золотой фольги, то именно ядро с большим потенциалом и было причиной наличия таких результатов, как и тот факт, что практически на 99,9% атом пустой и на эти же 99,9% масса атома сосредоточена в его ядре. Таким образом модель Резерфорда смогла объяснить не только результаты того самого эксперимента Резерфорда, но и многие другие явления, что и подтверждает верность этой модели.

Также уместно указать, что электроны располагаются не только по круговым орбитам, но и по собственным отдельно определённым путям, формы которых напоминают «8» на разных осях. Это позволяет расположить гораздо большее число электронов к примеру, для таких больших атомов как уран, с порядковым номером 92, нептуний-93, кюрий-96, калифорний-98 и многие другие. Эти пути приведены из отдельной теории орбиталей, которая также доказывает явление квантования в мире элементарных частиц, откуда можно сделать вывод, что электроны не двигаются, впрочем, как и все микрообъекты, они появляются-пропадают, появляются-пропадают, такова их природа существования.

И всё это образует полную структуру атома. Эта структура образует так называемую «квантовую лестницу», которая отчетливо проявляется при определении размеров всех частиц. Сам атом имеет диаметр порядка 10

 см, конечно он рознится у каждого атома, но средний размер равен именно этому показателю. В центре атома имеется собственное ядро с радиусом порядка 10

 см. Вокруг ядра вращаются электроны с диаметром меньше 10

 см, но это точечная частица для экспериментаторов, поскольку точный размер электрона на данный момент сложен в рассмотрении и даже при рассмотрении с таким показателем как 10

 см потерей в точности не будет наблюдаться. Если только не учитывать эксперименты с повышенной точностью, направленные на исследование более высоких разрешений.

Рис. 2.6. Квантовая лестница
<< 1 2 3 4 5 6 >>
На страницу:
4 из 6