Оценить:
 Рейтинг: 0

Использование ускорителей и явлений столкновения элементарных частиц с энергией высокого порядка для генерации электрической энергии. Проект «Электрон». Монография

<< 1 2 3 4 5 6 >>
На страницу:
5 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Ядро же само является составным и состоит из частиц именуемые нуклонами, при дальнейшим приближении можно убедиться, что внутри ядра имеется 2 типа нуклонов: протоны и нейтроны. Каждый из них по собственному размеру приблизительно составляет 10

 см. А при дальнейшем приближении можно наблюдать уже более малые частицы – кварки. Кварки сами по себе являются уже точечными частицами и имеют размер также меньший 10

, как и электроны.

Если говорить о дальнейшем увеличении и прохождении ещё дальше в глубины материи, то что там будет и как это выглядит, сегодня неизвестно. Но факт в том, что это сделать даже сегодня довольно трудно.

И сегодня квантовый мир предстаёт именно в этом виде. Производятся удивительные операции с этими и многими другими частицами, образуются многие другие частицы. Само же изучение квантового мира является очень даже важным, поскольку уже сегодня изучение в этой области привело к целому ряду открытий, ярким примером которого является создание технологий АЭС, создание ускорителей элементарных частиц, исследования в области проведения термоядерных реакций, широко известных под названием «создание искусственного Солнца» и многие другие исследования получили истоки именно в этой области. А также именно в этой области было зарождено исследование «Электрон», к которому и ведётся это повествование.

Открытие Конрадом Рентгеном особых лучшей испускаемых катодной трубкой, которые в дальнейшем получили имя самого Рентгена, вызвало большой фурор. Многие учёные начали активные исследования, но не успел мир оправится от этого удивления, как внезапно были открыты удивительные материалы, которые испускали эти удивительные лучи. Анри Беккерель, являющийся одним из знаменитых учёных, исследовавших флюоресценцию, решил доказать факт связи этого явления с радиоактивным источником – урановой солью. Именно тогда Беккерель в 1896 году оставил на фотопластинке материал без освещения по случайности и заметил, что на фотопластинке имелись потемнения, доказывающие, что соль сама по себе испускает удивительные лучи. Многие учёные исследовали это явление, пока не было доказано, что эти излучения – результат радиоактивного распада атомных ядер.

Рис. 2.7 Фотография, сделанная Беккерелем

Именно по этой причине 1896 год считается годом начала исследования в области атомного ядра. Также было известно, что если направить сфокусированное излучение из радиоактивного источника (урановую соль) поместив её в свинцовую камеру с единственной щелью, а затем на пути этого изучения расположить магниты, то это излучение будет разделено на 3 типа. При этом поток излучения, которое было направлено направо имеет отрицательный заряд, поток, который был повёрнут налево же имеет положительный заряд, что легко доказывается из закона Лоренца. А третье излучение, которое не было отклонено не имеет заряда.

Таким образом положительное излучение получило название альфа-частиц, а после измерения масс этих частиц исходя из формулы силы Лоренца при изменении индукции магнитного поля (принцип действия масс-спектрометра) можно было убедится, что это ядра атома гелия. Отрицательные частицы, которые были названы бета-частицами, при таком же анализе оказались просто быстрыми электронами, а лучи, которые не были отклонены, получили название гамма-излучения.

После того, как первоначально был проведён анализ структуры радиоактивного излучения, можно убедится, что само излучение состоит из 2 типов частиц и 1 типа волн, а именно гамма-излучения, благодаря чему уже можно привести общее определение радиоактивности:

Радиоактивность – самопроизвольное испускание атомными ядрами различных частиц и излучений.

Говоря уже более подробно о датах определения и исследования радиоактивности необходимо указать, что к 1900 году все типы радиоактивности уже были исследованы, хотя само атомное ядро было открыто Эрнестом Резерфордом лишь в 1911 году. Первое излучение – альфа-излучение, которое как уже было определено состоит из ядер гелия было открыто в 1898 году тем же Эрнестом Резерфордом и стало известным как альфа-распад. Также бета-распад или вылет электронов был открыт тем же Резерфордом в том же 1898 году. Но вот гамма-излучение было определено и исследовано лишь в 1900 году Полем Ульришем Виллардом.

Эти исследования и доказали, что потемнения пластин, наблюдаемые Беккерелем вызывалось именно радиоактивным излучением. Следовательно, теперь можно прийти к понятию радиоактивного распада:

Радиоактивный распад – спонтанный процесс, характерный для явлений микромира на квантовом уровне. При этом результат радиоактивного распада невозможно предсказать точно, лишь определить вероятность. Такая природа явлений не является несовершенством приборов, а является представлением уже самих процессов квантового мира.

Из этого утверждения можно сделать вывод, что должен быть некий общепринятый закон объясняющий это явление. Вывод закона радиоактивного распада представляется следующий образом:

Пусть в некий момент времени t имеется N (t) одинаковых радиоактивных ядер или нестабильных частиц и вероятность распада отдельного ядра (частицы) в единицу времени равняется ?.

В таком случае, за промежуток времени dt число радиоактивных ядер (частиц) уменьшится на dN, откуда вытекает следующее выражение (2.7).

Если же вывести из этого соотношения изменение по времени, то получается (2.8).

В (2.8) понятие ?, определяется в (2.9) и является средним временем жизни ядра (до распада), что довольно удобно к использованию, а N (0) в этом случае – это число ядер в начальный момент времени.

Также можно представить ещё один более упрощённый вид (2.8) в (2.10).

Где время с половинным индексом является периодом полураспада и вычисляется по (2.11) и равняется отдельному значению для каждого радиоактивного ядра.

Если же необходимо определить среднее число распадов (для распада с малой скоростью) вычисляется по (2.12).

При преобразовании данной закономерности образуется кривая радиоактивного распада (Рис. 2.8).

Рис. 2.8. Кривая радиоактивного распада

Из графика может увидеть, что закономерность экспоненциальная и при этом уменьшается каждый раз на половину периода с последующим уменьшением.

В качестве экспериментального анализа этого явления, можно показать следующее. Было проведено 100 измерений за одинаковый промежуток времени и при этом измерено число распадов. В результате был получен график на (Рис. 2.9), где среднее число распадов равное 77,47 совпало со значением в (2.12), что является ярким доказательством верности общей закономерности.

Рис. 2.9. Результат эксперимента

Общий вид распределения этой статистике представляется уже по иному закону. То есть вероятность P

за время t на испытание n числа распадов выдаётся распределением Пуассона (2.13).

Этот вывод уже присущ теории вероятности, и если полагаться на него, то также для случая, когда (n>> 1) используются уже распределения Гаусса (2.14).

Если же выражать эти две закономерности на графиках, можно получить почти совпадающие картины с увеличением среднего числа распадов. К примеру если среднее число распадов равно 2, то имеет место некоторая разница в результатах по распределению Пуассона и Гаусса, но когда это число, к примеру, достигает 7 и больших значений, эта разность становится всё менее значительной, что показано на (Рис 2.10).

Рис. 2.10. График вероятности распада по распределениям Пуассона и Гаусса для среднего числа распада равным 2 и 7

После того как с вероятностью на нулевой скорости было решено, можно обратить внимание на случаи, когда в дело вступают эффекты теории относительности. В микромире, где размеры изучаемых объектов практически невидимы, к примеру, для атомов с их размерами в 10

 см, для атомных ядер с их 10

-10

 см и для прочих частиц с 10

-10

 см, скорости часто бывают сопоставимы, близки или даже равны скорости света. Благодаря этому в микромире отчётливо проявляются все особенности и эффекты теории относительности.

По этой причине, важно подробнее рассмотреть соотношения и основные уравнения из теории относительности.

Одним из важнейших элементов в теории относительности является Лоренц-фактор (2.15), который участвует почти во всех формулах теории относительности, который также можно вывести из формулы кинетической энергии (2.16).

Из этих соотношений можно сделать вывод, что полная энергия, которая является суммой кинетической энергии и энергии покоя частицы определяется по (2.17).

Наличие этого равенства приводит к тому, что решается проблема отсутствия формулы для вычисления энергии частиц, не имеющих масс (пример, фотон или глюон). А уже из (2.16) также можно вывести более упрощённую запись для кинетической энергии (2.18). В случае же применения (2.15) для формулы импульса (2.19), получается также упрощённый вид.

Скорость же частицы выводимая из формул полной энергии (2.17) выглядит следующим образом (2.20).

Важным элементом также в вычислениях, также это полная энергия безмассовых частиц, является формула (2.21), где выводы которой приводятся также из соотношения полной энергии (2.17).

Понятие инварианта также играет роль в этом определении. Инвариант – это неизменная величина, вне зависимости от системы отчёта, с которого ведётся наблюдение. В данном случае, инвариантом является квадрат массы или (2.22).

И при этом не имеет значение, это одна частица или система частиц, поэтому полная энергия Е также относится к частице или системе частиц, также и импульс частицы относится как к частице или же системе частиц.

Одним из самых важных моментов в изучении физики атомного ядра и элементарных частиц, является знакомство с системой единиц, которой легче всего проводить вычисления – это Гауссовая система единиц вместе с некоторыми внесистемными величинами.

Говоря о единицах энергии, то благодаря малому количеству энергий, удобно использовать единицу электронвольт (эВ), что равняется 1,6*10

 Дж или 1,6*10

 эрг. Эта величина представляет собой энергию, которую приобретает электрон, проходя разность потенциалов в 1 Вольт. Также уместны значения в 1 кэВ (килоэлектронвольт) или 10
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6