P. Drechsler, Sitte, Brauch und Volksglaube in Schlesien (Leipsic, 1903-1906), ii. 70 sq.
270
A. Kuhn, Märkische Sagen und Märchen (Berlin, 1843), pp. 341 sq.
271
See below, pp. 133 (#x_14_i6)sqq.
272
Scholiast on Pindar, Olymp. ix. 150, p. 228, ed. Aug. Boeckh.
273
The games are assigned to Metageitnion by P. Stengel (Pauly-Wissowa, Real-Encyclopädie der classischen Altertumswissenschaft, v. 2. coll. 2331 sq.) and to Boedromion by August Mommsen and W. Dittenberger. The last-mentioned scholar supposes that the games immediately followed the Mysteries, and August Mommsen formerly thought so too, but he afterwards changed his view and preferred to suppose that the games preceded the Mysteries. See Aug. Mommsen, Heortologie (Leipsic, 1864), p. 263; id., Feste der Stadt Athen im Altertum (Leipsic, 1898), pp. 182 sqq.; Dittenberger, Sylloge Inscriptionum Graecarum,
No. 587, note 171 (vol. ii. pp. 313 sq.). The dating of the games in Metageitnion or in the early part of Boedromion depends on little more than a series of conjectures, particularly the conjectural restoration of an inscription and the conjectural dating of a certain sacrifice to Democracy.
274
A. de Candolle, Origin of Cultivated Plants (London, 1884), pp. 354 sq., 367 sqq.; R. Munro, The Lake-dwellings of Europe (London, Paris, and Melbourne, 1890), pp. 497 sqq.; O. Schrader, Reallexikon der indogermanischen Altertumskunde (Strasburg, 1901), pp. 8 sqq.; id., Sprachvergleichung und Urgeschichte (Jena, 1906-1907), ii. 185 sqq.; H. Hirt, Die Indogermanen (Strasburg, 1905-1907), i. 254 sqq., 273 sq., 276 sqq., ii. 640 sqq.; M. Much, Die Heimat der Indogermanen (Jena and Berlin, 1904), pp. 221 sqq.; T. E. Peet, The Stone and Bronze Ages in Italy and Sicily (Oxford, 1909), p. 362.
275
Aristotle, Constitution of Athens, 54, where the quadriennial (penteteric) festival of the Eleusinian Games is mentioned along with the quadriennial festivals of the Panathenaica, the Delia, the Brauronia, and the Heraclea. The biennial (trieteric) festival of the Eleusinian Games is mentioned only in the inscription of 329 b. c. (Dittenberger, Sylloge Inscriptionum Graecarum,
No. 587, lines 259 sq.). As to the identity of the Great Eleusinian Games with the quadriennial games see Dittenberger, Sylloge Inscriptionum Graecarum, No. 246 note 9, No. 587 note 171.
276
As to the Plataean games see Plutarch, Aristides, 21; Pausanias, ix. 2. 6.
277
Strabo, vii. 7. 6, p. 325; Suetonius, Augustus, 18; Dio Cassius, li. 1; Daremberg et Saglio, Dictionnaire des Antiquités Grecques et Romaines, s. v. “Actia.”
278
Pausanias, viii. 9. 8.
279
Scholiast on Pindar, Pyth., Argument, p. 298, ed. Aug. Boeckh; Censorinus, De die natali, xviii. 6. According to the scholiast on Pindar (l. c.) the change from the octennial to the quadriennial period was occasioned by the nymphs of Parnassus bringing ripe fruits in their hands to Apollo, after he had slain the dragon at Delphi.
280
Scholiast on Pindar, Olymp. iii. 35 (20), p. 98, ed. Aug. Boeckh. Compare Boeckh's commentary on Pindar (vol. iii. p. 138 of his edition); L. Ideler, Handbuch der mathematischen und technischen Chronologie, i. 366 sq., ii. 605 sqq.
281
See The Dying God, chapter ii. § 4, “Octennial Tenure of the Kingship,” especially pp. 68 sq., 80, 89 sq.
282
Geminus, Elementa Astronomiae, viii. 25 sqq., pp. 110 sqq., ed. C. Manitius (Leipsic, 1898); Censorinus, De die natali, xviii. 2-6.
283
Geminus, l. c.
284
Geminus, Elementa Astronomiae, viii. 36-41.
285
Censorinus, De die natali, xviii. 5. As Eudoxus flourished in the fourth century b. c., some sixty or seventy years after Meton, who introduced the nineteen years' cycle to remedy the defects of the octennial cycle, the claim of Eudoxus to have instituted the latter cycle may at once be put out of court. The claim of Cleostratus, who seems to have lived in the sixth or fifth century b. c., cannot be dismissed so summarily; but for the reasons given in the text he can hardly have done more than suggest corrections or improvements of the ancient octennial cycle.
286
Geminus, Elementa Astronomiae, viii. 27. With far less probability Censorinus (De die natali, xviii. 2-4) supposes that the octennial cycle was produced by the successive duplication of biennial and quadriennial cycles. See below, pp. 86 sq.
287
L. Ideler, Handbuch der mathematischen und technischen Chronologie, ii. 605.
288
The Dying God, pp. 58 sqq. Speaking of the octennial cycle Censorinus observes that “Ob hoc in Graecia multae religiones hoc intervallo temporis summa caerimonia coluntur” (De die natali, xviii. 6). Compare L. Ideler, op. cit. ii. 605 sq.; G. F. Unger, “Zeitrechnung der Griechen und Römer,” in Iwan Müller's Handbuch der classischen Altertumswissenschaft, i.
732 sq. The great age and the wide diffusion of the octennial cycle in Greece are rightly maintained by A. Schmidt (Handbuch der griechischen Chronologie, Jena, 1888, pp. 61 sqq.), who suggests that the cycle may have owed something to the astronomy of the Egyptians, with whom the inhabitants of Greece are known to have had relations from a very early time.
289
Aratus, Phaenomena, 733 sqq.; L. Ideler, Handbuch der mathematischen und technischen Chronologie, i. 255 sq.
290
Geminus, Elementa Astronomiae, viii. 15-45.
291
Macrobius, Saturnalia, i. 15. 9 sqq.; Livy, ix. 46. 5; Valerius Maximus, ii. 5. 2; Cicero, Pro Muraena, xi. 25; id., De legibus, ii. 12. 29; Suetonius, Divus Iulius, 40; Plutarch, Caesar, 59.
292
See The Dying God, pp. 92 sqq.