Оценить:
 Рейтинг: 0

Novum Organum

Год написания книги
2017
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 20 >>
На страницу:
11 из 20
Настройки чтения
Размер шрифта
Высота строк
Поля

This momentary nature either arises from the cessation of the cause which first produced it, as in light, sounds, and violent motions, as they are termed, or flame may be capable, by its own nature, of duration, but is subjected to some violence from the contrary natures which surround it, and is destroyed.

We may therefore adopt the following instance of the cross. We see to what a height the flames rise in great conflagrations; for as the base of the flame becomes more extensive, its vertex is more lofty. It appears, then, that the commencement of the extinction takes place at the sides, where the flame is compressed by the air, and is ill at ease; but the centre of the flame, which is untouched by the air and surrounded by flame, continues the same, and is not extinguished until compressed by degrees by the air attacking it from the sides. All flame, therefore, is pyramidal, having its base near the source, and its vertex pointed from its being resisted by the air, and not supplied from the source. On the contrary, the smoke, which is narrow at the base, expands in its ascent, and resembles an inverted pyramid, because the air admits the smoke, but compresses the flame; for let no one dream that the lighted flame is air, since they are clearly heterogeneous.

The instance of the cross will be more accurate, if the experiment can be made by flames of different colors. Take, therefore, a small metal sconce, and place a lighted taper in it, then put it in a basin, and pour a small quantity of spirits of wine round the sconce, so as not to reach its edge, and light the spirit. Now the flame of the spirit will be blue, and that of the taper yellow; observe, therefore, whether the latter (which can easily be distinguished from the former by its color, for flames do not mix immediately, as liquids do) continue pyramidal, or tend more to a globular figure, since there is nothing to destroy or compress it. If the latter result be observed, it must be considered as settled, that flame continues positively the same, while inclosed within another flame, and not exposed to the resisting force of the air.

Let this suffice for the instances of the cross. We have dwelt the longer upon them in order gradually to teach and accustom mankind to judge of nature by these instances, and enlightening experiments, and not by probable reasons.[135 - These instances, which Bacon seems to consider as a great discovery, are nothing more than disjunctive propositions combined with dilemmas. In proposing to explain an effect, we commence with the enumeration of the different causes which seem connected with its production; then with the aid of one or more dilemmas, we eliminate each of the phenomena accidental to its composition, and conclude with attributing the effect to the residue. For instance, a certain phenomenon (a) is produced either by phenomenon (B) or phenomenon (C); but C cannot be the cause of a, for it is found in D, E, F, neither of which are connected with a. Then the true cause of phenomenon (a) must be phenomenon (B).This species of reasoning is liable to several paralogisms, against which Bacon has not guarded his readers, from the very fact that he stumbled into them unwittingly himself. The two principal ones are false exclusions and defective enumerations. Bacon, in his survey of the causes which are able to concur in producing the phenomena of the tides, takes no account of the periodic melting of the Polar ice, or the expansion of water by the solar heat; nor does he fare better in his exclusions. For the attraction of the planets and the progression and retrograde motion communicated by the earth’s diurnal revolution, can plainly affect the sea together, and have a simultaneous influence on its surface.Bacon is hardly just or consistent in his censure of Ramus; the end of whose dichotomy was only to render reasoning by dilemma, and crucial instances, more certain in their results, by reducing the divisions which composed their parts to two sets of contradictory propositions. The affirmative or negative of one would then necessarily have led to the acceptance or rejection of the other. —Ed.]

XXXVII. We will treat of the instances of divorce as the fifteenth of our prerogative instances. They indicate the separation of natures of the most common occurrence. They differ, however, from those subjoined to the accompanying instances; for the instances of divorce point out the separation of a particular nature from some concrete substance with which it is usually found in conjunction, while the hostile instances point out the total separation of one nature from another. They differ, also, from the instances of the cross, because they decide nothing, but only inform us that the one nature is capable of being separated from the other. They are of use in exposing false forms, and dissipating hasty theories derived from obvious facts; so that they add ballast and weight, as it were, to the understanding.

For instance, let the acquired natures be those four which Telesius terms associates, and of the same family, namely, heat, light, rarity, and mobility, or promptitude to motion; yet many instances of divorce can be discovered between them. Air is rare and easily moved, but neither hot nor light; the moon is light but not hot; boiling water is warm but not light; the motion of the needle in the compass is swift and active, and yet its substance is cold, dense, and opaque; and there are many similar examples.

Again, let the required natures be corporeal nature and natural action. The latter appears incapable of subsisting without some body, yet may we, perhaps, even here find an instance of divorce, as in the magnetic motion, which draws the iron to the magnet, and heavy bodies to the globe of the earth; to which we may add other actions which operate at a distance. For such action takes place in time, by distinct moments, not in an instant; and in space, by regular degrees and distances. There is, therefore, some one moment of time and some interval of space, in which the power or action is suspended between the two bodies creating the motion. Our consideration, then, is reduced to this, whether the bodies which are the extremes of motion prepare or alter the intermediate bodies, so that the power advances from one extreme to the other by succession and actual contact, and in the meantime exists in some intermediate body; or whether there exists in reality nothing but the bodies, the power, and the space? In the case of the rays of light, sounds, and heat, and some other objects which operate at a distance, it is indeed probable that the intermediate bodies are prepared and altered, the more so because a qualified medium is required for their operation. But the magnetic or attractive power admits of an indifferent medium, and it is not impeded in any. But if that power or action is independent of the intermediate body, it follows that it is a natural power or action existing in a certain time and space without any body, since it exists neither in the extreme nor in the intermediate bodies. Hence the magnetic action may be taken as an instance of divorce of corporeal nature and natural action; to which we may add, as a corollary and an advantage not to be neglected, that it may be taken as a proof of essence and substance being separate and incorporeal, even by those who philosophize according to the senses. For if natural power and action emanating from a body can exist at any time and place entirely without any body, it is nearly a proof that it can also emanate originally from an incorporeal substance; for a corporeal nature appears to be no less necessary for supporting and conveying, than for exciting or generating natural action.

XXXVIII. Next follow five classes of instances which we are wont to call by the general term of instances of the lamp, or of immediate information. They are such as assist the senses; for since every interpretation of nature sets out from the senses, and leads, by a regular fixed and well-established road, from the perceptions of the senses to those of the understanding (which are true notions and axioms), it necessarily follows, that in proportion as the representatives or ministerings of the senses are more abundant and accurate, everything else must be more easy and successful.

The first of these five sets of instances of the lamp, strengthen, enlarge, and correct the immediate operations of the senses; the second reduce to the sphere of the senses such matters as are beyond it; the third indicate the continued process or series of such things and motions, as for the most part are only observed in their termination, or in periods; the fourth supply the absolute wants of the senses; the fifth excite their attention and observation, and at the same time limit the subtilty of things. We will now proceed to speak of them singly.

XXXIX. In the sixteenth rank, then, of prerogative instances, we will place the instances of the door or gate, by which name we designate such as assist the immediate action of the senses. It is obvious, that sight holds the first rank among the senses, with regard to information, for which reason we must seek principally helps for that sense. These helps appear to be threefold, either to enable it to perceive objects not naturally seen, or to see them from a greater distance, or to see them more accurately and distinctly.

We have an example of the first (not to speak of spectacles and the like, which only correct and remove the infirmity of a deficient sight, and therefore give no further information) in the lately invented microscopes, which exhibit the latent and invisible minutiæ of substances, and their hidden formation and motion, by wonderfully increasing their apparent magnitude. By their assistance we behold with astonishment the accurate form and outline of a flea, moss, and animalculæ, as well as their previously invisible color and motion. It is said, also, that an apparently straight line, drawn with a pen or pencil, is discovered by such a microscope to be very uneven and curved, because neither the motion of the hand, when assisted by a ruler, nor the impression of ink or color, are really regular, although the irregularities are so minute as not to be perceptible without the assistance of the microscope. Men have (as is usual in new and wonderful discoveries) added a superstitious remark, that the microscope sheds a lustre on the works of nature, and dishonor on those of art, which only means that the tissue of nature is much more delicate than that of art. For the microscope is only of use for minute objects, and Democritus, perhaps, if he had seen it, would have exulted in the thought of a means being discovered for seeing his atom, which he affirmed to be entirely invisible. But the inadequacy of these microscopes, for the observation of any but the most minute bodies, and even of those if parts of a larger body, destroys their utility; for if the invention could be extended to greater bodies, or the minute parts of greater bodies, so that a piece of cloth would appear like a net, and the latent minutiæ and irregularities of gems, liquids, urine, blood, wounds, and many other things could be rendered visible, the greatest advantage would, without doubt, be derived.

We have an instance of the second kind in the telescope, discovered by the wonderful exertions of Galileo; by the assistance of which a nearer intercourse may be opened (as by boats or vessels) between ourselves and the heavenly objects. For by its aid we are assured that the Milky Way is but a knot or constellation of small stars, clearly defined and separate, which the ancients only conjectured to be the case; whence it appears to be capable of demonstration, that the spaces of the planetary orbits (as they are termed) are not quite destitute of other stars, but that the heaven begins to glitter with stars before we arrive at the starry sphere, although they may be too small to be visible without the telescope. By the telescope, also, we can behold the revolutions of smaller stars round Jupiter, whence it may be conjectured that there are several centres of motion among the stars. By its assistance, also, the irregularity of light and shade on the moon’s surface is more clearly observed and determined, so as to allow of a sort of selenography.[136 - Père Shenier first pointed out the spots on the sun’s disk, and by the marks which they afforded him, computed its revolution to be performed in twenty-five days and some hours. —Ed.] By the telescope we see the spots in the sun, and other similar phenomena; all of which are most noble discoveries, as far as credit can be safely given to demonstrations of this nature, which are on this account very suspicious, namely, that experiment stops at these few, and nothing further has yet been discovered by the same method, among objects equally worthy of consideration.

We have instances of the third kind in measuring-rods, astrolabes, and the like, which do not enlarge, but correct and guide the sight. If there be other instances which assist the other senses in their immediate and individual action, yet if they add nothing further to their information they are not apposite to our present purpose, and we have therefore said nothing of them.

XL. In the seventeenth rank of prerogative instances we will place citing instances (to borrow a term from the tribunals), because they cite those things to appear, which have not yet appeared. We are wont also to call them invoking instances, and their property is that of reducing to the sphere of the senses objects which do not immediately fall within it.

Objects escape the senses either from their distance, or the intervention of other bodies, or because they are not calculated to make an impression upon the senses, or because they are not in sufficient quantity to strike the senses, or because there is not sufficient time for their acting upon the senses, or because the impression is too violent, or because the senses are previously filled and possessed by the object, so as to leave no room for any new motion. These remarks apply principally to sight, and next to touch, which two senses act extensively in giving information, and that too upon general objects, while the remaining three inform us only, as it were, by their immediate action, and as to specific objects.

There can be no reduction to the sphere of the senses in the first case, unless in the place of the object, which cannot be perceived on account of the distance, there be added or substituted some other object, which can excite and strike the sense from a greater distance, as in the communication of intelligence by fires, bells, and the like.

In the second case we effect this reduction by rendering those things which are concealed by the interposition of other bodies, and which cannot easily be laid open, evident to the senses by means of that which lies at the surface, or proceeds from the interior; thus the state of the body is judged of by the pulse, urine, etc.

The third and fourth cases apply to many subjects, and the reduction to the sphere of the senses must be obtained from every quarter in the investigation of things. There are many examples. It is obvious that air, and spirit, and the like, whose whole substance is extremely rare and delicate, can neither be seen nor touched – a reduction, therefore, to the senses becomes necessary in every investigation relating to such bodies.

Let the required nature, therefore, be the action and motion of the spirit inclosed in tangible bodies; for every tangible body with which we are acquainted contains an invisible and intangible spirit, over which it is drawn, and which it seems to clothe. This spirit being emitted from a tangible substance, leaves the body contracted and dry; when retained, it softens and melts it; when neither wholly emitted nor retained, it models it, endows it with limbs, assimilates, manifests, organizes it, and the like. All these points are reduced to the sphere of the senses by manifest effects.

For in every tangible and inanimate body the inclosed spirit at first increases, and as it were feeds on the tangible parts which are most open and prepared for it; and when it has digested and modified them, and turned them into spirit, it escapes with them. This formation and increase of spirit is rendered sensible by the diminution of weight; for in every desiccation something is lost in quantity, not only of the spirit previously existing in the body, but of the body itself, which was previously tangible, and has been recently changed, for the spirit itself has no weight. The departure or emission of spirit is rendered sensible in the rust of metals, and other putrefactions of a like nature, which stop before they arrive at the rudiments of life, which belong to the third species of process.[137 - Rust is now well known to be a chemical combination of oxygen with the metal, and the metal when rusty acquires additional weight. His theory as to the generation of animals, is deduced from the erroneous notion of the possibility of spontaneous generation (as it was termed). See the next paragraph but one.] In compact bodies the spirit does not find pores and passages for its escape, and is therefore obliged to force out, and drive before it, the tangible parts also, which consequently protrude, whence arises rust and the like. The contraction of the tangible parts, occasioned by the emission of part of the spirit (whence arises desiccation), is rendered sensible by the increased hardness of the substance, and still more by the fissures, contractions, shrivelling, and folds of the bodies thus produced. For the parts of wood split and contract, skins become shrivelled, and not only that, but, if the spirit be emitted suddenly by the heat of the fire, become so hastily contracted as to twist and roll themselves up.

On the contrary, when the spirit is retained, and yet expanded and excited by heat or the like (which happens in solid and tenacious bodies), then the bodies are softened, as in hot iron; or flow, as in metals; or melt, as in gums, wax, and the like. The contrary effects of heat, therefore (hardening some substances and melting others), are easily reconciled,[138 - “Limus ut hic durescit, et hæc ut cera liquescitUno eodemque igni.” – Virg. Ecl. viii.] because the spirit is emitted in the former, and agitated and retained in the latter; the latter action is that of heat and the spirit, the former that of the tangible parts themselves, after the spirit’s emission.

But when the spirit is neither entirely retained nor emitted, but only strives and exercises itself, within its limits, and meets with tangible parts, which obey and readily follow it wherever it leads them, then follows the formation of an organic body, and of limbs, and the other vital actions of vegetables and animals. These are rendered sensible chiefly by diligent observation of the first beginnings, and rudiments or effects of life in animalculæ sprung from putrefaction, as in the eggs of ants, worms, mosses, frogs after rain, etc. Both a mild heat and a pliant substance, however, are necessary for the production of life, in order that the spirit may neither hastily escape, nor be restrained by the obstinacy of the parts, so as not to be able to bend and model them like wax.

Again, the difference of spirit which is important and of effect in many points (as unconnected spirit, branching spirit, branching and cellular spirit, the first of which is that of all inanimate substances, the second of vegetables, and the third of animals), is placed, as it were, before the eyes by many reducing instances.

Again, it is clear that the more refined tissue and conformation of things (though forming the whole body of visible or tangible objects) are neither visible nor tangible. Our information, therefore, must here also be derived from reduction to the sphere of the senses. But the most radical and primary difference of formation depends on the abundance or scarcity of matter within the same space or dimensions. For the other formations which regard the dissimilarity of the parts contained in the same body, and their collocation and position, are secondary in comparison with the former.

Let the required nature then be the expansion or coherence of matter in different bodies, or the quantity of matter relative to the dimensions of each. For there is nothing in nature more true than the twofold proposition – that nothing proceeds from nothing and that nothing is reduced to nothing, but that the quantum, or sum total of matter, is constant, and is neither increased nor diminished. Nor is it less true, that out of this given quantity of matter, there is a greater or less quantity, contained within the same space or dimensions according to the difference of bodies; as, for instance, water contains more than air. So that if any one were to assert that a given content of water can be changed into an equal content of air, it is the same as if he were to assert that something can be reduced into nothing. On the contrary, if any one were to assert that a given content of air can be changed into an equal content of water, it is the same as if he were to assert that something can proceed from nothing. From this abundance or scarcity of matter are properly derived the notions of density and rarity, which are taken in various and promiscuous senses.

This third assertion may be considered as being also sufficiently certain; namely, that the greater or less quantity of matter in this or that body, may, by comparison, be reduced to calculation, and exact, or nearly exact, proportion. Thus, if one should say that there is such an accumulation of matter in a given quantity of gold, that it would require twenty-one times the quantity in dimension of spirits of wine, to make up the same quantity of matter, it would not be far from the truth.

The accumulation of matter, however, and its relative quantity, are rendered sensible by weight; for weight is proportionate to the quantity of matter, as regards the parts of a tangible substance, but spirit and its quantity of matter are not to be computed by weight, which spirit rather diminishes than augments.

We have made a tolerably accurate table of weight, in which we have selected the weights and size of all the metals, the principal minerals, stones, liquids, oils, and many other natural and artificial bodies: a very useful proceeding both as regards theory and practice, and which is capable of revealing many unexpected results. Nor is this of little consequence, that it serves to demonstrate that the whole range of the variety of tangible bodies with which we are acquainted (we mean tolerably close, and not spongy, hollow bodies, which are for a considerable part filled with air), does not exceed the ratio of one to twenty-one. So limited is nature, or at least that part of it to which we are most habituated.

We have also thought it deserving our industry, to try if we could arrive at the ratio of intangible or pneumatic bodies to tangible bodies, which we attempted by the following contrivance. We took a vial capable of containing about an ounce, using a small vessel in order to effect the subsequent evaporation with less heat. We filled this vial, almost to the neck, with spirits of wine, selecting it as the tangible body which, by our table, was the rarest, and contained a less quantity of matter in a given space than all other tangible bodies which are compact and not hollow. Then we noted exactly the weight of the liquid and vial. We next took a bladder, containing about two pints, and squeezed all the air out of it, as completely as possible, and until the sides of the bladder met. We first, however, rubbed the bladder gently with oil, so as to make it air-tight, by closing its pores with the oil. We tied the bladder tightly round the mouth of the vial, which we had inserted in it, and with a piece of waxed thread to make it fit better and more tightly, and then placed the vial on some hot coals in a brazier. The vapor or steam of the spirit, dilated and become aëriform by the heat, gradually swelled out the bladder, and stretched it in every direction like a sail. As soon as that was accomplished, we removed the vial from the fire and placed it on a carpet, that it might not be cracked by the cold; we also pricked the bladder immediately, that the steam might not return to a liquid state by the cessation of heat, and confound the proportions. We then removed the bladder, and again took the weight of the spirit which remained; and so calculated the quantity which had been converted into vapor, or an aëriform shape, and then examined how much space had been occupied by the body in its form of spirits of wine in the vial, and how much, on the other hand, had been occupied by it in its aëriform shape in the bladder, and subtracted the results; from which it was clear that the body, thus converted and changed, acquired an expansion of one hundred times beyond its former bulk.

Again, let the required nature be heat or cold, of such a degree as not to be sensible from its weakness. They are rendered sensible by the thermometer, as we described it above;[139 - See Table of Degrees, No. 38 (#Tab_3_Inst_38).] for the cold and heat are not actually perceived by the touch, but heat expands and cold contracts the air. Nor, again, is that expansion or contraction of the air in itself visible, but the air when expanded depresses the water, and when contracted raises it, which is the first reduction to sight.

Again, let the required nature be the mixture of bodies; namely, how much aqueous, oleaginous or spirituous, ashy or salt parts they contain; or, as a particular example, how much butter, cheese, and whey there is in milk, and the like. These things are rendered sensible by artificial and skilful separations in tangible substances; and the nature of the spirit in them, though not immediately perceptible, is nevertheless discovered by the various motions and efforts of bodies. And, indeed, in this branch men have labored hard in distillations and artificial separations, but with little more success than in their other experiments now in use; their methods being mere guesses and blind attempts, and more industrious than intelligent; and what is worst of all, without any imitation or rivalry of nature, but rather by violent heats and too energetic agents, to the destruction of any delicate conformation, in which principally consist the hidden virtues and sympathies. Nor do men in these separations ever attend to or observe what we have before pointed out; namely, that in attacking bodies by fire, or other methods, many qualities are superinduced by the fire itself, and the other bodies used to effect the separation, which were not originally in the compound. Hence arise most extraordinary fallacies; for the mass of vapor which is emitted from water by fire, for instance, did not exist as vapor or air in the water, but is chiefly created by the expansion of the water by the heat of the fire.

So, in general, all delicate experiments on natural or artificial bodies, by which the genuine are distinguished from the adulterated, and the better from the more common, should be referred to this division; for they bring that which is not the object of the senses within their sphere. They are therefore to be everywhere diligently sought after.

With regard to the fifth cause of objects escaping our senses, it is clear that the action of the sense takes place by motion, and this motion is time. If, therefore, the motion of any body be either so slow or so swift as not to be proportioned to the necessary momentum which operates on the senses, the object is not perceived at all; as in the motion of the hour hand, and that, again, of a musket-ball. The motion which is imperceptible by the senses from its slowness, is readily and usually rendered sensible by the accumulation of motion; that which is imperceptible from its velocity, has not as yet been well measured; it is necessary, however, that this should be done in some cases, with a view to a proper investigation of nature.

The sixth case, where the sense is impeded by the power of the object, admits of a reduction to the sensible sphere, either by removing the object to a greater distance, or by deadening its effects by the interposition of a medium, which may weaken and not destroy the object; or by the admission of its reflection where the direct impression is too strong, as that of the sun in a basin of water.

The seventh case, where the senses are so overcharged with the object as to leave no further room, scarcely occurs except in the smell or taste, and is not of much consequence as regards our present subject. Let what we have said, therefore, suffice with regard to the reduction to the sensible sphere of objects not naturally within its compass.

Sometimes, however, this reduction is not extended to the senses of man, but to those of some other animal, whose senses, in some points, exceed those of man; as (with regard to some scents) to that of the dog, and with regard to light existing imperceptibly in the air, when not illuminated from any extraneous source, to the sense of the cat, the owl, and other animals which see by night. For Telesius has well observed, that there appears to be an original portion of light even in the air itself,[140 - Riccati, and all modern physicists, discover some portion of light in every body, which seems to confirm the passage in Genesis that assigns to this substance priority in creation. —Ed.] although but slight and meagre, and of no use for the most part to the eyes of men, and those of the generality of animals; because those animals to whose senses this light is proportioned can see by night, which does not, in all probability, proceed from their seeing either without light or by any internal light.

Here, too, we would observe, that we at present discuss only the wants of the senses, and their remedies; for their deceptions must be referred to the inquiries appropriated to the senses, and sensible objects; except that important deception, which makes them define objects in their relation to man, and not in their relation to the universe, and which is only corrected by universal reasoning and philosophy.[141 - As instances of this kind, which the progress of science since the time of Bacon affords, we may cite the air-pump and the barometer, for manifesting the weight and elasticity of air: the measurement of the velocity of light, by means of the occultation of Jupiter’s satellites and the aberration of the fixed stars: the experiments in electricity and galvanism, and in the greater part of pneumatic chemistry. In all these cases scientific facts are elicited, which sense could never have revealed to us. —Ed.]

XLI. In the eighteenth rank of prerogative instances we will class the instances of the road, which we are also wont to call itinerant and jointed instances. They are such as indicate the gradually continued motions of nature. This species of instances escapes rather our observation than our senses; for men are wonderfully indolent upon this subject, consulting nature in a desultory manner, and at periodic intervals, when bodies have been regularly finished and completed, and not during her work. But if any one were desirous of examining and contemplating the talents and industry of an artificer, he would not merely wish to see the rude materials of his art, and then his work when finished, but rather to be present while he is at labor, and proceeding with his work. Something of the same kind should be done with regard to nature. For instance, if any one investigate the vegetation of plants, he should observe from the first sowing of any seed (which can easily be done, by pulling up every day seeds which have been two, three, or four days in the ground, and examining them diligently), how and when the seed begins to swell and break, and be filled, as it were, with spirit; then how it begins to burst the bark and push out fibres, raising itself a little at the same time, unless the ground be very stiff; then how it pushes out these fibres, some downward for roots, others upward for the stem, sometimes also creeping laterally, if it find the earth open and more yielding on one side, and the like. The same should be done in observing the hatching of eggs, where we may easily see the process of animation and organization, and what parts are formed of the yolk, and what of the white of the egg, and the like. The same may be said of the inquiry into the formation of animals from putrefaction; for it would not be so humane to inquire into perfect and terrestrial animals, by cutting the fœtus from the womb; but opportunities may perhaps be offered of abortions, animals killed in hunting, and the like. Nature, therefore, must, as it were, be watched, as being more easily observed by night than by day: for contemplations of this kind may be considered as carried on by night, from the minuteness and perpetual burning of our watch-light.

The same must be attempted with inanimate objects, which we have ourselves done by inquiring into the opening of liquids by fire. For the mode in which water expands is different from that observed in wine, vinegar, or verjuice, and very different, again, from that observed in milk and oil, and the like; and this was easily seen by boiling them with slow heat, in a glass vessel, through which the whole may be clearly perceived. But we merely mention this, intending to treat of it more at large and more closely when we come to the discovery of the latent process; for it should always be remembered that we do not here treat of things themselves, but merely propose examples.[142 - The itinerant instances, as well as frontier instances, are cases in which we are enabled to trace the general law of continuity which seems to pervade all nature, and which has been aptly embodied in the sentence, “natura non agit per saltum.” The pursuit of this law into phenomena where its application is not at first sight obvious, has opened a mine of physical discovery, and led us to perceive an intimate connection between facts which at first seemed hostile to each other. For example, the transparency of gold-leaf, which permits a bluish-green light to pass through it, is a frontier instance between transparent and opaque bodies, by exhibiting a body of the glass generally regarded the most opaque in nature, as still possessed of some slight degree of transparency. It thus proves that the quality of opacity is not a contrary or antagonistic quality to that of transparency, but only its extreme lowest degree.]

XLII. In the nineteenth rank of prerogative instances we will class supplementary or substitutive instances, which we are also wont to call instances of refuge. They are such as supply information, where the senses are entirely deficient, and we therefore have recourse to them when appropriate instances cannot be obtained. This substitution is twofold, either by approximation or by analogy. For instance, there is no known medium which entirely prevents the effect of the magnet in attracting iron – neither gold, nor silver, nor stone, nor glass, wood, water, oil, cloth, or fibrous bodies, air, flame, or the like. Yet by accurate experiment, a medium may perhaps be found which would deaden its effect, more than another comparatively and in degree; as, for instance, the magnet would not perhaps attract iron through the same thickness of gold as of air, or the same quantity of ignited as of cold silver, and so on; for we have not ourselves made the experiment, but it will suffice as an example. Again, there is no known body which is not susceptible of heat, when brought near the fire; yet air becomes warm much sooner than stone. These are examples of substitution by approximation.

Substitution by analogy is useful, but less sure, and therefore to be adopted with some judgment. It serves to reduce that which is not the object of the senses to their sphere, not by the perceptible operations of the imperceptible body, but by the consideration of some similar perceptible body. For instance, let the subject for inquiry be the mixture of spirits, which are invisible bodies. There appears to be some relation between bodies and their sources or support. Now, the source of flame seems to be oil and fat; that of air, water, and watery substances; for flame increases over the exhalation of oil, and air over that of water. One must therefore consider the mixture of oil and water, which is manifest to the senses, since that of air and flame in general escapes the senses. But oil and water mix very imperfectly by composition or stirring, while they are exactly and nicely mixed in herbs, blood, and the parts of animals. Something similar, therefore, may take place in the mixture of flame and air in spirituous substances, not bearing mixture very well by simple collision, while they appear, however, to be well mixed in the spirits of plants and animals.

Again, if the inquiry do not relate to perfect mixtures of spirits, but merely to their composition, as whether they easily incorporate with each other, or there be rather (as an example) certain winds and exhalations, or other spiritual bodies, which do not mix with common air, but only adhere to and float in it in globules and drops, and are rather broken and pounded by the air, than received into, and incorporated with it; this cannot be perceived in common air, and other aëriform substances, on account of the rarity of the bodies, but an image, as it were, of this process may be conceived in such liquids as quicksilver, oil, water, and even air, when broken and dissipated it ascends in small portions through water, and also in the thicker kinds of smoke; lastly, in dust, raised and remaining in the air, in all of which there is no incorporation: and the above representation in this respect is not a bad one, if it be first diligently investigated, whether there can be such a difference of nature between spirituous substances, as between liquids, for then these images might conveniently be substituted by analogy.

And although we have observed of these supplementary instances, that information is to be derived from them, when appropriate instances are wanting, by way of refuge, yet we would have it understood, that they are also of great use, when the appropriate instances are at hand, in order to confirm the information afforded by them; of which we will speak more at length, when our subject leads us, in due course, to the support of induction.

XLIII. In the twentieth rank of prerogative instances we will place lancing instances, which we are also wont (but for a different reason) to call twitching instances. We adopt the latter name, because they twitch the understanding, and the former because they pierce nature, whence we style them occasionally the instances of Democritus.[143 - Alluding to his theory of atoms.] They are such as warn the understanding of the admirable and exquisite subtilty of nature, so that it becomes roused and awakened to attention, observation, and proper inquiry; as, for instance, that a little drop of ink should be drawn out into so many letters; that silver merely gilt on its surface should be stretched to such a length of gilt wire; that a little worm, such as you may find on the skin, should possess both a spirit and a varied conformation of its parts; that a little saffron should imbue a whole tub of water with its color; that a little musk or aroma should imbue a much greater extent of air with its perfume; that a cloud of smoke should be raised by a little incense; that such accurate differences of sounds as articulate words should be conveyed in all directions through the air, and even penetrate the pores of wood and water (though they become much weakened), that they should be, moreover, reflected, and that with such distinctness and velocity; that light and color should for such an extent and so rapidly pass through solid bodies, such as glass and water, with so great and so exquisite a variety of images, and should be refracted and reflected; that the magnet should attract through every description of body, even the most compact; but (what is still more wonderful) that in all these cases the action of one should not impede that of another in a common medium, such as air; and that there should be borne through the air, at the same time, so many images of visible objects, so many impulses of articulation, so many different perfumes, as of the violet, rose, etc., besides cold and heat, and magnetic attractions; all of them, I say, at once, without any impediment from each other, as if each had its paths and peculiar passage set apart for it, without infringing against or meeting each other.

To these lancing instances, however, we are wont, not without some advantage, to add those which we call the limits of such instances. Thus, in the cases we have pointed out, one action does not disturb or impede another of a different nature, yet those of a similar nature subdue and extinguish each other; as the light of the sun does that of the candle, the sound of a cannon that of the voice, a strong perfume a more delicate one, a powerful heat a more gentle one, a plate of iron between the magnet and other iron the effect of the magnet. But the proper place for mentioning these will be also among the supports of induction.

XLIV. We have now spoken of the instances which assist the senses, and which are principally of service as regards information; for information begins from the senses. But our whole labor terminates in practice, and as the former is the beginning, so is the latter the end of our subject. The following instances, therefore, will be those which are chiefly useful in practice. They are comprehended in two classes, and are seven in number. We call them all by the general name of practical instances. Now there are two defects in practice, and as many divisions of important instances. Practice is either deceptive or too laborious. It is generally deceptive (especially after a diligent examination of natures), on account of the power and actions of bodies being ill defined and determined. Now the powers and actions of bodies are defined and determined either by space or by time, or by the quantity at a given period, or by the predominance of energy; and if these four circumstances be not well and diligently considered, the sciences may indeed be beautiful in theory, but are of no effect in practice. We call the four instances referred to this class, mathematical instances and instances of measure.

Practice is laborious either from the multitude of instruments, or the bulk of matter and substances requisite for any given work. Those instances, therefore, are valuable, which either direct practice to that which is of most consequence to mankind, or lessen the number of instruments or of matter to be worked upon. We assign to the three instances relating to this class, the common name of propitious or benevolent instances. We will now separately discuss these seven instances, and conclude with them that part of our work which relates to the prerogative or illustrious instances.

XLV. In the twenty-first rank of prerogative instances we will place the instances of the rod or rule, which we are also wont to call the instances of completion or non ultrà. For the powers and motions of bodies do not act and take effect through indefinite and accidental, but through limited and certain spaces; and it is of great importance to practice that these should be understood and noted in every nature which is investigated, not only to prevent deception, but to render practice more extensive and efficient. For it is sometimes possible to extend these powers, and bring the distance, as it were, nearer, as in the example of telescopes.

Many powers act and take effect only by actual touch, as in the percussion of bodies, where the one does not remove the other, unless the impelling touch the impelled body. External applications in medicine, as ointment and plasters, do not exercise their efficacy except when in contact with the body. Lastly, the objects of touch and taste only strike those senses when in contact with their organs.

Other powers act at a distance, though it be very small, of which but few have as yet been noted, although there be more than men suspect; this happens (to take everyday instances) when amber or jet attracts straws, bubbles dissolve bubbles, some purgative medicines draw humors from above, and the like. The magnetic power by which iron and the magnet, or two magnets, are attracted together, acts within a definite and narrow sphere, but if there be any magnetic power emanating from the earth a little below its surface, and affecting the needle in its polarity, it must act at a great distance.
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 20 >>
На страницу:
11 из 20

Другие аудиокниги автора Фрэнсис Бэкон