It is shown by comparing the effects of fire with those of time. Time dries, consumes, undermines, and reduces to ashes as well as fire, and perhaps to a much finer degree; but as its motion is very slow, and attacks very minute particles, no heat is perceived.
It is also shown in a comparison of the dissolution of iron and gold; for gold is dissolved without the excitement of any heat, but iron with a vehement excitement of it, although most in the same time, because in the former the penetration of the separating acid is mild, and gently insinuates itself, and the particles of gold yield easily, but the penetration of iron is violent, and attended with some struggle, and its particles are more obstinate.
It is partially shown, also, in some gangrenes and mortifications of flesh, which do not excite great heat or pain, from the gentle nature of the putrefaction.
Let this suffice for a first vintage, or the commencement of the interpretation of the form of heat by the liberty of the understanding.
From this first vintage the form or true definition of heat (considered relatively to the universe and not to the sense) is briefly thus – Heat is an expansive motion restrained, and striving to exert itself in the smaller particles.[106 - Bacon’s inquisition into the nature of heat, as an example of the mode of interpreting nature, cannot be looked upon otherwise than as a complete failure. Though the exact nature of this phenomenon is still an obscure and controverted matter, the science of thermotics now consists of many important truths, and to none of these truths is there so much as an approximation in Bacon’s process. The steps by which this science really advanced were the discovery of a measure of a heat or temperature, the establishment of the laws of conduction and radiation, of the laws of specific heat, latent heat, and the like. Such advances have led to Ampère’s hypothesis, that heat consists in the vibrations of an imponderable fluid; and to Laplace’s theory, that temperature consists in the internal radiation of a similar medium. These hypotheses cannot yet be said to be even probable, but at least they are so modified as to include some of the preceding laws which are firmly established, whereas Bacon’s “form,” or true definition of heat, as stated in the text, includes no laws of phenomena, explains no process, and is indeed itself an example of illicit generalization.In all the details of his example of heat he is unfortunate. He includes in his collection of instances, the hot tastes of aromatic plants, the caustic effects of acids, and many other facts which cannot be ascribed to heat without a studious laxity in the use of the word. —Ed.] The expansion is modified by its tendency to rise, though expanding toward the exterior; and the effort is modified by its not being sluggish, but active and somewhat violent.
With regard to the operative definition, the matter is the same. If you are able to excite a dilating or expansive motion in any natural body, and so to repress that motion and force it on itself as not to allow the expansion to proceed equally, but only to be partially exerted and partially repressed, you will beyond all doubt produce heat, without any consideration as to whether the body be of earth (or elementary, as they term it), or imbued with celestial influence, luminous or opaque, rare or dense, locally expanded or contained within the bounds of its first dimensions, verging to dissolution or remaining fixed, animal, vegetable, or mineral, water, or oil, or air, or any other substance whatever susceptible of such motion. Sensible heat is the same, but considered relatively to the senses. Let us now proceed to further helps.
XXI. After our tables of first review, our rejection or exclusive table, and the first vintage derived from them, we must advance to the remaining helps of the understanding with regard to the interpretation of nature, and a true and perfect induction, in offering which we will take the examples of cold and heat where tables are necessary, but where fewer instances are required we will go through a variety of others, so as neither to confound investigation nor to narrow our doctrine.
In the first place, therefore, we will treat of prerogative instances;[107 - By this term Bacon understands general phenomena, taken in order from the great mass of indiscriminative facts, which, as they lie in nature, are apt to generate confusion by their number, indistinctness and complication. Such classes of phenomena, as being peculiarly suggestive of causation, he quaintly classes under the title of prerogative inquiries, either seduced by the fanciful analogy, which such instances bore to the prerogativa centuria in the Roman Comitia, or justly considering them as Herschel supposes to hold a kind of prerogative dignity from being peculiarly suggestive of causation.Two high authorities in physical science (v. Herschel, Nat. Phil., art. 192; Whewell’s Philosophy of the Inductive Sciences, vol. ii. p. 243) pronounce these instances of little service in the task of induction, being for the most part classed not according to the ideas which they involve, or to any obvious circumstance in the facts of which they consist, but according to the extent and manner of their influence upon the inquiry in which they are employed. Thus we have solitary instances, migrating instances, ostensive instances, clandestine instances, so termed according to the degree in which they exhibit, or seem to exhibit, the property, whose nature we would examine. We have guide-post instances, crucial instances, instances of the parted road, of the doorway, of the lamp, according to the guidance they supply to our advance. Whewell remarks that such a classification is much of the same nature as if, having to teach the art of building, we were to describe tools with reference to the amount and place of the work which they must do, instead of pointing out their construction and use; as if we were to inform the pupil that we must have tools for lifting a stone up, tools for moving it sidewise, tools for laying it square, and tools for cementing it firmly. The means are thus lost in the end, and we reap the fruits of unmethodical arrangement in the confusion of cross division. In addition, all the instances are leavened with the error of confounding the laws with the causes of phenomena, and we are urged to adopt the fundamental error of seeking therein the universal agents, or general causes of phenomena, without ascending the gradual steps of intermediate laws. —Ed.] 2. Of the supports of induction; 3. Of the correction of induction; 4. Of varying the investigation according to the nature of the subject; 5. Of the prerogative natures with respect to investigation, or of what should be the first or last objects of our research; 6. Of the limits of investigation, or a synopsis of all natures that exist in the universe; 7. Of the application to practical purposes, or of what relates to man; 8. Of the preparations for investigation; 9. And lastly, of the ascending and descending scale of axioms.[108 - Of these nine general heads no more than the first is prosecuted by the author.]
XXII. Among the prerogative instances we will first mention solitary instances. Solitary instances are those which exhibit the required nature in subjects that have nothing in common with any other subject than the nature in question, or which do not exhibit the required nature in subjects resembling others in every respect except that of the nature in question; for these instances manifestly remove prolixity, and accelerate and confirm exclusion, so that a few of them are of as much avail as many.
For instance, let the inquiry be the nature of color. Prisms, crystalline gems, which yield colors not only internally but on the wall, dews, etc., are solitary instances; for they have nothing in common with the fixed colors in flowers and colored gems, metals, woods, etc., except the color itself. Hence we easily deduce that color is nothing but a modification of the image of the incident and absorbed light, occasioned in the former case by the different degrees of incidence, in the latter by the various textures and forms of bodies.[109 - This very nearly approaches to Sir I. Newton’s discovery of the decomposition of light by the prism.] These are solitary instances as regards similitude.
Again, in the same inquiry the distinct veins of white and black in marble, and the variegated colors of flowers of the same species, are solitary instances; for the black and white of marble, and the spots of white and purple in the flowers of the stock, agree in every respect but that of color. Thence we easily deduce that color has not much to do with the intrinsic natures of any body, but depends only on the coarser and as it were mechanical arrangement of the parts. These are solitary instances as regards difference. We call them both solitary or wild, to borrow a word from the astronomers.
XXIII. In the second rank of prerogative instances we will consider migrating instances. In these the required nature passes toward generation, having no previous existence, or toward corruption, having first existed. In each of these divisions, therefore, the instances are always twofold, or rather it is one instance, first in motion or on its passage, and then brought to the opposite conclusion. These instances not only hasten and confirm exclusion, but also reduce affirmation, or the form itself, to a narrow compass; for the form must be something conferred by this migration, or, on the contrary, removed and destroyed by it; and although all exclusion advances affirmation, yet this takes place more directly in the same than in different subjects; but if the form (as it is quite clear from what has been advanced) exhibit itself in one subject, it leads to all. The more simple the migration is, the more valuable is the instance. These migrating instances are, moreover, very useful in practice, for since they manifest the form, coupled with that which causes or destroys it, they point out the right practice in some subjects, and thence there is an easy transition to those with which they are most allied. There is, however, a degree of danger which demands caution, namely, lest they should refer the form too much to its efficient cause, and imbue, or at least tinge, the understanding with a false notion of the form from the appearance of such cause, which is never more than a vehicle or conveyance of the form. This may easily be remedied by a proper application of exclusion.
Let us then give an example of a migrating instance. Let whiteness be the required nature. An instance which passes toward generation is glass in its entire and in its powdered state, or water in its natural state, and when agitated to froth; for glass when entire, and water in its natural state, are transparent and not white, but powdered glass and the froth of water are white and not transparent. We must inquire, therefore, what has happened to the glass or water in the course of this migration; for it is manifest that the form of whiteness is conveyed and introduced by the bruising of the glass and the agitation of the water; but nothing is found to have been introduced but a diminishing of the parts of the glass and water and the insertion of air. Yet this is no slight progress toward discovering the form of whiteness, namely, that two bodies, in themselves more or less transparent (as air and water, or air and glass), when brought into contact in minute portions, exhibit whiteness from the unequal refraction of the rays of light.
But here we must also give an example of the danger and caution of which we spoke; for instance, it will readily occur to an understanding perverted by efficients, that air is always necessary for producing the form of whiteness, or that whiteness is only generated by transparent bodies, which suppositions are both false, and proved to be so by many exclusions; nay, it will rather appear (without any particular regard to air or the like), that all bodies which are even in such of their parts as affect the sight exhibit transparency, those which are uneven and of simple texture whiteness, those which are uneven and of compound but regular texture all the other colors except black, but those which are uneven and of a compound irregular and confused texture exhibit blackness. An example has been given, therefore, of an instance migrating toward generation in the required nature of whiteness. An instance migrating toward corruption in the same nature is that of dissolving froth or snow, for they lose their whiteness and assume the transparency of water in its pure state without air.
Nor should we by any means omit to state, that under migrating instances we must comprehend not only those which pass toward generation and destruction, but also those which pass toward increase or decrease, for they, too, assist in the discovery of the form, as is clear from our definition of a form and the Table of Degrees. Hence paper, which is white when dry, is less white when moistened (from the exclusion of air and admission of water), and tends more to transparency. The reason is the same as in the above instances.[110 - The mineral kingdom, as displaying the same nature in all its gradations, from the shells so perfect in structure in limestone to the finer marbles in which their nature gradually disappears, is the great theatre for instances of migration. —Ed.]
XXIV. In the third rank of prerogative instances we will class conspicuous instances, of which we spoke in our first vintage of the form of heat, and which we are also wont to call coruscations, or free and predominant instances. They are such as show the required nature in its bare substantial shape, and at its height or greatest degree of power, emancipated and free from all impediments, or at least overcoming, suppressing, and restraining them by the strength of its qualities; for since every body is susceptible of many united forms of natures in the concrete, the consequence is that they mutually deaden, depress, break, and confine each other, and the individual forms are obscured. But there are some subjects in which the required nature exists in its full vigor rather than in others, either from the absence of any impediment, or the predominance of its quality. Such instances are eminently conspicuous. But even in these care must be taken, and the hastiness of the understanding checked, for whatever makes a show of the form, and forces it forward, is to be suspected, and recourse must be had to severe and diligent exclusion.
For example, let heat be the required nature. The thermometer is a conspicuous instance of the expansive motion, which (as has been observed) constitutes the chief part of the form of heat; for although flame clearly exhibits expansion, yet from its being extinguished every moment, it does not exhibit the progress of expansion. Boiling water again, from its rapid conversion into vapor, does not so well exhibit the expansion of water in its own shape, while red-hot iron and the like are so far from showing this progress, that, on the contrary, the expansion itself is scarcely evident to the senses, on account of its spirit being repressed and weakened by the compact and coarse particles which subdue and restrain it. But the thermometer strikingly exhibits the expansion of the air as being evident and progressive, durable and not transitory.[111 - Bacon was not aware of the fact since brought to light by Römer, that down to fourteen fathoms from the earth’s mean level the thermometer remains fixed at the tenth degree, but that as the thermometer descends below that depth the heat increases in a ratio proportionate to the descent, which happens with little variation in all climates. Buffon considers this a proof of a central fire in our planet. —Ed.]
Take another example. Let the required nature be weight. Quicksilver is a conspicuous instance of weight; for it is far heavier than any other substance except gold, which is not much heavier, and it is a better instance than gold for the purpose of indicating the form of weight; for gold is solid and consistent, which qualities must be referred to density, but quicksilver is liquid and teeming with spirit, yet much heavier than the diamond and other substances considered to be most solid; whence it is shown that the form of gravity or weight predominates only in the quantity of matter, and not in the close fitting of it.[112 - All the diversities of bodies depend upon two principles, i. e., the quantity and the position of the elements that enter into their composition. The primary difference is not that which depends on the greatest or least quantity of material elements, but that which depends on their position. It was the quick perception of this truth that made Leibnitz say that to complete mathematics it was necessary to join to the analysis of quantity the analysis of position. —Ed.]
XXV. In the fourth rank of prerogative instances we will class clandestine instances, which we are also wont to call twilight instances; they are as it were opposed to the conspicuous instances, for they show the required nature in its lowest state of efficacy, and as it were its cradle and first rudiments, making an effort and a sort of first attempt, but concealed and subdued by a contrary nature. Such instances are, however, of great importance in discovering forms, for as the conspicuous tend easily to differences, so do the clandestine best lead to genera, that is, to those common natures of which the required natures are only the limits.
As an example, let consistency, or that which confines itself, be the required nature, the opposite of which is a liquid or flowing state. The clandestine instances are such as exhibit some weak and low degree of consistency in fluids, as a water bubble, which is a sort of consistent and bounded pellicle formed out of the substance of the water. So eaves’ droppings, if there be enough water to follow them, draw themselves out into a thin thread, not to break the continuity of the water, but if there be not enough to follow, the water forms itself into a round drop, which is the best form to prevent a breach of continuity; and at the moment the thread ceases, and the water begins to fall in drops, the thread of water recoils upward to avoid such a breach. Nay, in metals, which when melted are liquid but more tenacious, the melted drops often recoil and are suspended. There is something similar in the instance of the child’s looking-glass, which little boys will sometimes form of spittle between rushes, and where the same pellicle of water is observable; and still more in that other amusement of children, when they take some water rendered a little more tenacious by soap, and inflate it with a pipe, forming the water into a sort of castle of bubbles, which assumes such consistency, by the interposition of the air, as to admit of being thrown some little distance without bursting. The best example is that of froth and snow, which assume such consistency as almost to admit of being cut, although composed of air and water, both liquids. All these circumstances clearly show that the terms liquid and consistent are merely vulgar notions adapted to the sense, and that in reality all bodies have a tendency to avoid a breach of continuity, faint and weak in bodies composed of homogeneous parts (as is the case with liquids), but more vivid and powerful in those composed of heterogeneous parts, because the approach of heterogeneous matter binds bodies together, while the insinuation of homogeneous matter loosens and relaxes them.
Again, to take another example, let the required nature be attraction or the cohesion of bodies. The most remarkable conspicuous instance with regard to its form is the magnet. The contrary nature to attraction is non-attraction, though in a similar substance. Thus iron does not attract iron, lead lead, wood wood, nor water water. But the clandestine instance is that of the magnet armed with iron, or rather that of iron in the magnet so armed. For its nature is such that the magnet when armed does not attract iron more powerfully at any given distance than when unarmed; but if the iron be brought in contact with the armed magnet, the latter will sustain a much greater weight than the simple magnet, from the resemblance of substance in the two portions of iron, a quality altogether clandestine and hidden in the iron until the magnet was introduced. It is manifest, therefore, that the form of cohesion is something which is vivid and robust in the magnet, and hidden and weak in the iron. It is to be observed, also, that small wooden arrows without an iron point, when discharged from large mortars, penetrate further into wooden substances (such as the ribs of ships or the like), than the same arrows pointed with iron,[113 - Query?] owing to the similarity of substance, though this quality was previously latent in the wood. Again, although in the mass air does not appear to attract air, nor water water, yet when one bubble is brought near another, they are both more readily dissolved, from the tendency to contact of the water with the water, and the air with the air.[114 - The real cause of this phenomenon is the attraction of the surface-water in the vessel by the sides of the bubbles. When the bubbles approach, the sides nearest each other both tend to raise the small space of water between them, and consequently less water is raised by each of these nearer sides than by the exterior part of the bubble, and the greater weight of the water raised on the exterior parts pushes the bubbles together. In the same manner a bubble near the side of a vessel is pushed toward it; the vessel and bubble both drawing the water that is between them. The latter phenomenon cannot be explained on Bacon’s hypothesis.] These clandestine instances (which are, as has been observed, of the most important service) are principally to be observed in small portions of bodies, for the larger masses observe more universal and general forms, as will be mentioned in its proper place.[115 - Modern discoveries appear to bear out the sagacity of Bacon’s remark, and the experiments of Baron Cagnard may be regarded as a first step toward its full demonstration. After the new facts elicited by that philosopher, there can be little doubt that the solid, liquid and aëriform state of bodies are merely stages in a progress of gradual transition from one extreme to the other, and that however strongly marked the distinctions between them may appear, they will ultimately turn out to be separated by no sudden or violent line of demarcation, but slide into each other by imperceptible gradations. Bacon’s suggestion, however, is as old as Pythagoras, and perhaps simultaneous with the first dawn of philosophic reason. The doctrine of the reciprocal transmutation of the elements underlies all the physical systems of the ancients, and was adopted by the Epicureans as well as the Stoics. Ovid opens his last book of the Metamorphoses with the poetry of the subject, where he expressly points to the hint of Bacon: —– “Tenuatus in aurasAëraque humor abit, etc., etc.Inde retro redeunt, idemque retexitur ordo.” – xv. 246–249.and Seneca, in the third book of his Natural Philosophy, quest. iv., states the opinion in more precise language than either the ancient bard or the modern philosopher. —Ed.]
XXVI. In the fifth rank of prerogative instances we will class constitutive instances, which we are wont also to call collective instances. They constitute a species or lesser form, as it were, of the required nature. For since the real forms (which are always convertible with the given nature) lie at some depth, and are not easily discovered, the necessity of the case and the infirmity of the human understanding require that the particular forms, which collect certain groups of instances (but by no means all) into some common notion, should not be neglected, but most diligently observed. For whatever unites nature, even imperfectly, opens the way to the discovery of the form. The instances, therefore, which are serviceable in this respect are of no mean power, but endowed with some degree of prerogative.
Here, nevertheless, great care must be taken that, after the discovery of several of these particular forms, and the establishing of certain partitions or divisions of the required nature derived from them, the human understanding do not at once rest satisfied, without preparing for the investigation of the great or leading form, and taking it for granted that nature is compound and divided from its very root, despise and reject any further union as a point of superfluous refinement, and tending to mere abstraction.
For instance, let the required nature be memory, or that which excites and assists memory. The constitutive instances are order or distribution, which manifestly assists memory: topics or commonplaces in artificial memory, which may be either places in their literal sense, as a gate, a corner, a window, and the like, or familiar persons and marks, or anything else (provided it be arranged in a determinate order), as animals, plants, and words, letters, characters, historical persons, and the like, of which, however, some are more convenient than others. All these commonplaces materially assist memory, and raise it far above its natural strength. Verse, too, is recollected and learned more easily than prose. From this group of three instances – order, the commonplaces of artificial memory, and verses – is constituted one species of aid for the memory,[116 - The author’s own system of Memoria Technica may be found in the De Augmentis, chap. xv. We may add that, notwithstanding Bacon’s assertion that he intended his method to apply to religion, politics, and morals, this is the only lengthy illustration he has adduced of any subject out of the domain of physical science. —Ed.] which may be well termed a separation from infinity. For when a man strives to recollect or recall anything to memory, without a preconceived notion or perception of the object of his search, he inquires about, and labors, and turns from point to point, as if involved in infinity. But if he have any preconceived notion, this infinity is separated off, and the range of his memory is brought within closer limits. In the three instances given above, the preconceived notion is clear and determined. In the first, it must be something that agrees with order; in the second, an image which has some relation or agreement with the fixed commonplaces; in the third, words which fall into a verse: and thus infinity is divided off. Other instances will offer another species, namely, that whatever brings the intellect into contact with something that strikes the sense (the principal point of artificial memory), assists the memory. Others again offer another species, namely, whatever excites an impression by any powerful passion, as fear, shame, wonder, delight, assists the memory. Other instances will afford another species: thus those impressions remain most fixed in the memory which are taken from the mind when clear and least occupied by preceding or succeeding notions, such as the things we learn in childhood, or imagine before sleep, and the first time of any circumstance happening. Other instances afford the following species: namely, that a multitude of circumstances or handles assist the memory, such as writing in paragraphs, reading aloud, or recitation. Lastly, other instances afford still another species: thus the things we anticipate, and which rouse our attention, are more easily remembered than transient events; as if you read any work twenty times over, you will not learn it by heart so readily as if you were to read it but ten times, trying each time to repeat it, and when your memory fails you looking into the book. There are, therefore, six lesser forms, as it were, of things which assist the memory: namely – 1, the separation of infinity; 2, the connection of the mind with the senses; 3, the impression in strong passion; 4, the impression on the mind when pure; 5, the multitude of handles; 6, anticipation.
Again, for example’s sake, let the required nature be taste or the power of tasting. The following instances are constitutive: 1. Those who do not smell, but are deprived by nature of that sense, do not perceive or distinguish rancid or putrid food by their taste, nor garlic from roses, and the like. 2. Again, those whose nostrils are obstructed by accident (such as a cold) do not distinguish any putrid or rancid matter from anything sprinkled with rose-water. 3. If those who suffer from a cold blow their noses violently at the very moment in which they have anything fetid or perfumed in their mouth, or on their palate, they instantly have a clear perception of the fetor or perfume. These instances afford and constitute this species or division of taste, namely, that it is in part nothing else than an internal smelling, passing and descending through the upper passages of the nostrils to the mouth and palate. But, on the other hand, those whose power of smelling is deficient or obstructed, perceive what is salt, sweet, pungent, acid, rough, and bitter, and the like, as well as any one else: so that the taste is clearly something compounded of the internal smelling, and an exquisite species of touch which we will not here discuss.
Again, as another example, let the required nature be the communication of quality, without intermixture of substance. The instance of light will afford or constitute one species of communication, heat and the magnet another. For the communication of light is momentary and immediately arrested upon the removal of the original light. But heat, and the magnetic force, when once transmitted to or excited in another body, remain fixed for a considerable time after the removal of the source.
In fine, the prerogative of constitutive instances is considerable, for they materially assist the definitions (especially in detail) and the divisions or partitions of natures, concerning which Plato has well said, “He who can properly define and divide is to be considered a god.”[117 - The collective instances here meant are no other than general facts or laws of some degree of generality, and are themselves the result of induction. For example, the system of Jupiter, or Saturn with its satellites, is a collective instance, and materially assisted in securing the admission of the Copernican system. We have here in miniature, and displayed at one view, a system analogous to that of the planets about the sun, of which, from the circumstance of our being involved in it, and unfavorably situated for seeing it otherwise than in detail, we are incapacitated from forming a general idea, but by slow and progressive efforts of reason.But there is a species of collective instance which Bacon does not seem to have contemplated, in which particular phenomena are presented in such numbers at once, as to make the induction of their law a matter of ocular inspection. For example, the parabolic form assumed by a jet of water spouted out of a hole is a collective instance of the velocities and directions of the motions of all the particles which compose it seen together, and which thus leads us without trouble to recognize the law of the motion of a projectile. Again, the beautiful figures exhibited by sand strewed on regular plates of glass or metal set in vibration, are collective instances of an infinite number of points which remain at rest while the remainder of the plate vibrates, and in consequence afford us an insight into the law which regulates their arrangement and sequence throughout the whole surface. The richly colored lemniscates seen around the optic axis of crystals exposed to polarized light afford a striking instance of the same kind, pointing at once to the general mathematical expression of the law which regulates their production. Such collective instances as these lead us to a general law by an induction which offers itself spontaneously, and thus furnish advanced posts in philosophical exploration. The laws of Kepler, which Bacon ignored on account of his want of mathematical taste, may be cited as a collective instance. The first is, that the planets move in elliptical orbits, having the sun for their common focus. The second, that about this focus the radius vector of each planet describes equal areas in equal times. The third, that the squares of the periodic times of the planets are as the cubes of their mean distance from the sun. This collective instance “opened the way” to the discovery of the Newtonian law of gravitation. —Ed.]
XXVII. In the sixth rank of prerogative instances we will place similar or proportionate instances, which we are also wont to call physical parallels, or resemblances. They are such as exhibit the resemblances and connection of things, not in minor forms (as the constitutive do), but at once in the concrete. They are, therefore, as it were, the first and lowest steps toward the union of nature; nor do they immediately establish any axiom, but merely indicate and observe a certain relation of bodies to each other. But although they be not of much assistance in discovering forms, yet they are of great advantage in disclosing the frame of parts of the universe, upon whose members they practice a species of anatomy, and thence occasionally lead us gently on to sublime and noble axioms, especially such as relate to the construction of the world, rather than to simple natures and forms.
As an example, take the following similar instances: a mirror and the eye; the formation of the ear, and places which return an echo. From such similarity, besides observing the resemblance (which is useful for many purposes), it is easy to collect and form this axiom. That the organs of the senses, and bodies which produce reflections to the senses, are of a similar nature. Again, the understanding once informed of this, rises easily to a higher and nobler axiom; namely, that the only distinction between sensitive and inanimate bodies, in those points in which they agree and sympathize, is this: in the former, animal spirit is added to the arrangement of the body, in the latter it is wanting. So that there might be as many senses in animals as there are points of agreement with inanimate bodies, if the animated body were perforated, so as to allow the spirit to have access to the limb properly disposed for action, as a fit organ. And, on the other hand, there are, without doubt, as many motions in an inanimate as there are senses in the animated body, though the animal spirit be absent. There must, however, be many more motions in inanimate bodies than senses in the animated, from the small number of organs of sense. A very plain example of this is afforded by pains. For, as animals are liable to many kinds and various descriptions of pains (such as those of burning, of intense cold, of pricking, squeezing, stretching, and the like), so is it most certain, that the same circumstances, as far as motion is concerned, happen to inanimate bodies, such as wood or stone when burned, frozen, pricked, cut, bent, bruised, and the like; although there be no sensation, owing to the absence of animal spirit.
Again, wonderful as it may appear, the roots and branches of trees are similar instances. For every vegetable swells and throws out its constituent parts toward the circumference, both upward and downward. And there is no difference between the roots and branches, except that the root is buried in the earth, and the branches are exposed to the air and sun. For if one take a young and vigorous shoot, and bend it down to a small portion of loose earth, although it be not fixed to the ground, yet will it immediately produce a root, and not a branch. And, vice versâ, if earth be placed above, and so forced down with a stone or any hard substance, as to confine the plant and prevent its branching upward, it will throw out branches into the air downward.
The gums of trees, and most rock gems, are similar instances; for both of them are exudations and filtered juices, derived in the former instance from trees, in the latter from stones; the brightness and clearness of both arising from a delicate and accurate filtering. For nearly the same reason, the hair of animals is less beautiful and vivid in its color than the plumage of most birds, because the juices are less delicately filtered through the skin than through the quills.
The scrotum of males and matrix of females are also similar instances; so that the noble formation which constitutes the difference of the sexes appears to differ only as to the one being internal and the other external; a greater degree of heat causing the genitals to protrude in the male, while the heat of the female being too weak to effect this, they are retained internally.
The fins of fishes and the feet of quadrupeds, or the feet and wings of birds, are similar instances; to which Aristotle adds the four folds in the motion of serpents;[118 - Is not this very hasty generalization? Do serpents move with four folds only? Observe also the motion of centipedes and other insects.] so that in the formation of the universe, the motion of animals appears to be chiefly effected by four joints or bendings.
The teeth of land animals, and the beaks of birds, are similar instances, whence it is clear, that in all perfect animals there is a determination of some hard substance toward the mouth.
Again, the resemblance and conformity of man to an inverted plant is not absurd. For the head is the root of the nerves and animal faculties, and the seminal parts are the lowest, not including the extremities of the legs and arms. But in the plant, the root (which resembles the head) is regularly placed in the lowest, and the seeds in the highest part.[119 - Shaw states another point of difference between the objects cited in the text – animals having their roots within, while plants have theirs without; for their lacteals nearly correspond with the fibres of the roots in plants; so that animals seem nourished within themselves as plants are without. —Ed.]
Lastly, we must particularly recommend and suggest, that man’s present industry in the investigation and compilation of natural history be entirely changed, and directed to the reverse of the present system. For it has hitherto been active and curious in noting the variety of things, and explaining the accurate differences of animals, vegetables, and minerals, most of which are the mere sport of nature, rather than of any real utility as concerns the sciences. Pursuits of this nature are certainly agreeable, and sometimes of practical advantage, but contribute little or nothing to the thorough investigation of nature. Our labor must therefore be directed toward inquiring into and observing resemblances and analogies, both in the whole and its parts, for they unite nature, and lay the foundation of the sciences.
Here, however, a severe and rigorous caution must be observed, that we only consider as similar and proportionate instances, those which (as we first observed) point out physical resemblances; that is, real and substantial resemblances, deeply founded in nature, and not casual and superficial, much less superstitious or curious; such as those which are constantly put forward by the writers on natural magic (the most idle of men, and who are scarcely fit to be named in connection with such serious matters as we now treat of), who, with much vanity and folly, describe, and sometimes too, invent, unmeaning resemblances and sympathies.
But leaving such to themselves, similar instances are not to be neglected, in the greater portions of the world’s conformation; such as Africa and the Peruvian continent, which reaches to the Straits of Magellan; both of which possess a similar isthmus and similar capes, a circumstance not to be attributed to mere accident.
Again, the New and Old World are both of them broad and expanded toward the north, and narrow and pointed toward the south.
Again, we have very remarkable similar instances in the intense cold, toward the middle regions (as it is termed) of the air, and the violent fires which are often found to burst from subterraneous spots, the similarity consisting in both being ends and extremes; the extreme of the nature of cold, for instance, is toward the boundary of heaven, and that of the nature of heat toward the centre of the earth, by a similar species of opposition or rejection of the contrary nature.
Lastly, in the axioms of the sciences, there is a similarity of instances worthy of observation. Thus the rhetorical trope which is called surprise, is similar to that of music termed the declining of a cadence. Again – the mathematical postulate, that things which are equal to the same are equal to one another, is similar to the form of the syllogism in logic, which unites things agreeing in the middle term.[120 - Bacon falls into an error here in regarding the syllogism as something distinct from the reasoning faculty, and only one of its forms. It is not generally true that the syllogism is only a form of reasoning by which we unite ideas which accord with the middle term. This agreement is not even essential to accurate syllogisms; when the relation of the two things compared to the third is one of equality or similitude, it of course follows that the two things compared may be pronounced equal, or like to each other. But if the relation between these terms exist in a different form, then it is not true that the two extremes stand in the same relation to each other as to the middle term. For instance, if A is double of B, and B double of C, then A is quadruple of C. But then the relation of A to C is different from that of A to B and of B to C. —Ed.] Lastly, a certain degree of sagacity in collecting and searching for physical points of similarity, is very useful in many respects.[121 - Comparative anatomy is full of analogies of this kind. Those between natural and artificial productions are well worthy of attention, and sometimes lead to important discoveries. By observing an analogy of this kind between the plan used in hydraulic engines for preventing the counter-current of a fluid, and a similar contrivance in the blood vessels, Harvey was led to the discovery of the circulation of the blood. —Ed.]
XXVIII. In the seventh rank of prerogative instances, we will place singular instances, which we are also wont to call irregular or heteroclite (to borrow a term from the grammarians). They are such as exhibit bodies in the concrete, of an apparently extravagant and separate nature, agreeing but little with other things of the same species. For, while the similar instances resemble each other, those we now speak of are only like themselves. Their use is much the same with that of clandestine instances: they bring out and unite nature, and discover genera or common natures, which must afterward be limited by real differences. Nor should we desist from inquiry, until the properties and qualities of those things, which may be deemed miracles, as it were, of nature, be reduced to, and comprehended in, some form or certain law; so that all irregularity or singularity may be found to depend on some common form; and the miracle only consists in accurate differences, degree, and rare coincidence, not in the species itself. Man’s meditation proceeds no further at present, than just to consider things of this kind as the secrets and vast efforts of nature, without an assignable cause, and, as it were, exceptions to general rules.
As examples of singular instances, we have the sun and moon among the heavenly bodies; the magnet among minerals; quicksilver among metals; the elephant among quadrupeds; the venereal sensation among the different kinds of touch; the scent of sporting dogs among those of smell. The letter S, too, is considered by the grammarians as sui generis, from its easily uniting with double or triple consonants, which no other letter will. These instances are of great value, because they excite and keep alive inquiry, and correct an understanding depraved by habit and the common course of things.
XXIX. In the eighth rank of prerogative instances, we will place deviating instances, such as the errors of nature, or strange and monstrous objects, in which nature deviates and turns from her ordinary course. For the errors of nature differ from singular instances, inasmuch as the latter are the miracles of species, the former of individuals. Their use is much the same, for they rectify the understanding in opposition to habit, and reveal common forms. For with regard to these, also, we must not desist from inquiry, till we discern the cause of the deviation. The cause does not, however, in such cases rise to a regular form, but only to the latent process toward such a form. For he who is acquainted with the paths of nature, will more readily observe her deviations; and, vice versâ, he who has learned her deviations will be able more accurately to describe her paths.
They differ again from singular instances, by being much more apt for practice and the operative branch. For it would be very difficult to generate new species, but less so to vary known species, and thus produce many rare and unusual results.[122 - This is well illustrated in plants, for the gardener can produce endless varieties of any known species, but can never produce a new species itself.] The passage from the miracles of nature to those of art is easy; for if nature be once seized in her variations, and the cause be manifest, it will be easy to lead her by art to such deviation as she was at first led to by chance; and not only to that but others, since deviations on the one side lead and open the way to others in every direction. Of this we do not require any examples, since they are so abundant. For a compilation, or particular natural history, must be made of all monsters and prodigious births of nature; of everything, in short, which is new, rare and unusual in nature. This should be done with a rigorous selection, so as to be worthy of credit. Those are most to be suspected which depend upon superstition, as the prodigies of Livy, and those perhaps, but little less, which are found in the works of writers on natural magic, or even alchemy, and the like; for such men, as it were, are the very suitors and lovers of fables; but our instances should be derived from some grave and credible history, and faithful narration.
XXX. In the ninth rank of prerogative instances, we will place bordering instances, which we are also wont to term participants. They are such as exhibit those species of bodies which appear to be composed of two species, or to be the rudiments between the one and the other. They may well be classed with the singular or heteroclite instances; for in the whole system of things, they are rare and extraordinary. Yet from their dignity, they must be treated of and classed separately, for they point out admirably the order and constitution of things, and suggest the causes of the number and quality of the more common species in the universe, leading the understanding from that which is, to that which is possible.
We have examples of them in moss, which is something between putrescence and a plant;[123 - The discoveries of Tournefort have placed moss in the class of plants. The fish alluded to below are to be found only in the tropics. —Ed.] in some comets, which hold a place between stars and ignited meteors; in flying fishes, between fishes and birds; and in bats, between birds and quadrupeds.[124 - There is, however, no real approximation to birds in either the flying fish or bat, any more than a man approximates to a fish because he can swim. The wings of the flying fish and bat are mere expansions of skin, bearing no resemblance whatever to those of birds. —Ed.] Again,
Simia quam similis turpissima bestia nobis
We have also biformed fœtus, mingled species and the like.
XXXI. In the tenth rank of prerogative instances, we will place the instances of power, or the fasces (to borrow a term from the insignia of empire), which we are also wont to call the wit or hands of man. These are such works as are most noble and perfect, and, as it were, the masterpieces in every art. For since our principal object is to make nature subservient to the state and wants of man, it becomes us well to note and enumerate the works, which have long since been in the power of man, especially those which are most polished and perfect: because the passage from these to new and hitherto undiscovered works, is more easy and feasible. For if any one, after an attentive contemplation of such works as are extant, be willing to push forward in his design with alacrity and vigor, he will undoubtedly either advance them, or turn them to something within their immediate reach, or even apply and transfer them to some more noble purpose.