Оценить:
 Рейтинг: 0

Метеорологические и геофизические исследования

Год написания книги
2011
Теги
<< 1 ... 8 9 10 11 12 13 >>
На страницу:
12 из 13
Настройки чтения
Размер шрифта
Высота строк
Поля
Боков В.Н., Клеванцов Ю.П., Рожков В.А. Оценки межгодовой изменчивости скорости ветра над морем // Известия АН, Физика атмосферы и океана. 1993. Т. 29, № 3. C. 253–289.

Боков В.Н., Бухановский А.В., Иванов Н.Е., Рожков В.А. Пространственно-временная изменчивость поля ветра в умеренных широтах Северного полушария // Известия АН, Физика атмосферы и океана. 2001. Т. 37, № 2. C. 170–181.

Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М., ВЦ АН СССР, 1968. 474 с.

Ван дер Варден Б.Л. Математическая статистика. М., Изд-во иностр. лит., 1960. 434 с.

Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М., Финансы и статистика. Т. 1. 1986. 366 с.

Майстрова В.В., Кифус Г.А., Курмачев А.А. Методические указания по машинной обработке и контролю данных гидрометнаблюдений. 1981. Вып. 4. 20 с.

Майстрова В.В., Кифус Г.А., Курмачев A.A. Система автоматизированной централизованной обработки, контроля и накопления аэрологической информации глобальной сети станций // Метеорология и гидрология. 1986. № 8. C. 112–117

Рожков В.А. Теория вероятностей случайных событий, величин и функций с гидрометеорологическими примерами. С-Пб., Прогресс-Погода, 1997. 559 с.

Рожков В.А. Теория и методы статистического оценивания вероятностных характеристик случайных величин и функций с гидрометеорологическими примерами. Книга 1. СПб, Гидрометеоиздат, 2001. 340 с.

Тьюки Д. Анализ результатов наблюдений. Разведочный анализ. М., Мир, 1981. 693 с.

A.P. Makshtas[7 - Arctic and antarcic research institution, S.-Petersburg, Russia], I.I. Bolshakova[8 - Arctic and antarcic research institution, S.-Petersburg, Russia], R.M. Gunn[9 - Yakutian department of hydrometeorology, Yakutsk, Russia], O.L. Jukova[10 - Arctic and antarcic research institution, S.-Petersburg, Russia], N.E. Ivanov[11 - Arctic and antarcic research institution, S.-Petersburg, Russia], S.V. Shutilin[12 - Arctic and antarcic research institution, S.-Petersburg, Russia]. Climate of Hydrometeorological observatory Tiksi region

Abstract

The description of created by AARI with participation of Tiksi Branch of Yakutsk Hydrometeorological Service electronic archives of all available data of upper-air, standard meteorological, and hydrological observations carried out on the polar station Tiksi from August 1932 to December 2007 is presented. The methods of analysis of interannual variability, annual cycle, variability of synoptic scale and diurnal variations are described. Statistical analysis of long-term variability of free atmosphere, surface layer and hydrological regime of the area Hydrometeorological Observatory in Tiksi is fulfilled.

П.Н. Священников[13 - Санкт-Петербургский государственный университет],[14 - Арктический и Антарктический научно-исследовательский институт, Санкт-Петербург, Россия], Б.В. Иванов[15 - Арктический и Антарктический научно-исследовательский институт, Санкт-Петербург, Россия],[16 - Санкт-Петербургский государственный университет, Россия], П.В. Бочаров[17 - Санкт-Петербургский государственный университет, Россия],[18 - Арктический и Антарктический научно-исследовательский институт, Санкт-Петербург, Россия], Д.М. Журавский[19 - Санкт-Петербургский государственный университет, Россия], В.Ф. Тимачев[20 - Санкт-Петербургский государственный университет, Россия], А.В. Семенов[21 - Мурманское УГМС, Россия], Т.А. Солдатова[22 - Мурманское УГМС, Россия], А.Р. Анциферова[23 - Мурманское УГМС, Россия]

Исследование радиационных климатических факторов и метеорологического режима архипелага Шпицберген

Аннотация

На примере данных о суммарной солнечной радиации и облачности, полученных для пункта Баренцбург (остров Западный Шпицберген, ГМО «Баренцбург» Мурманского УГМС), исследуется изменчивость климата архипелага Шпицберген во второй половине ХХ века. С помощью эмпирического подхода оценена долгопериодная изменчивость нисходящего излучения атмосферы (длинноволновая радиация) и проанализирована взаимосвязь этой величины с изменением характеристик облачности. Тенденции в изменении облачности рассматриваются как одна из причин потепления в данном регионе.

Отечественные и зарубежные исследования, выполненные в последнее время (Анциферова и др., 2010; Иванов и др., 2010; Священников и др., 2004; Священников и др., 2010; Семенов и др., 2002; Павлов и др., 2010; Nordli P. et al., 2004), отчетливо фиксируют тенденцию к потеплению климата на архипелаге Шпицберген, проявляющуюся как для отдельных, но достаточно длительных промежутков времени (например, десятилетия), так и для всего ХХ века в целом. При этом тенденция повышения приземной температуры воздуха наблюдается на фоне многолетнего понижения годовых сумм приходящей солнечной радиации (Священников и др., 2010), которое отмечается по данным наблюдений, проводящихся в Баренцбурге (1985–2009 гг.) и в Нью-Алесуне (1975–2009 гг.). Очевидно, что причина столь странного, на первый взгляд, явления кроется в сложном характере причинно-следственных связей в климатической системе. В данной работе мы попытались последовательно проанализировать временную изменчивость основных характеристик климата архипелага Шпицберген, их сезонную структуру, а также механизмы так называемых обратных связей.

Облачность является одним из основных факторов, определяющих перенос коротковолновой и длинноволновой радиации в атмосфере. Ее влияние на радиационные потоки определяется количеством, высотой, мощностью и водностью облаков (Васильева и др., 2003; Curry, et al., 1992). Важность адекватного описания облачности в полярных районах при моделировании морского ледяного покрова обусловлена необходимостью точной оценки составляющих радиационного баланса поверхности снежно-ледяного покрова вследствие высокой чувствительности процессов таяния и нарастания льда к потокам коротковолновой и длинноволновой радиации (Maykut, et al., 1971).

Основной целью наших исследований, выполненных в период МПГ 2007–2009, стало изучение влияния характеристик облачности на радиационный и температурный режим приземного слоя воздуха. В качестве района исследований был взят пункт Баренцбург, расположенный на восточном берегу залива Грен-фьорд на острове Западный Шпицберген. Здесь, начиная с 1932 г. (с перерывом в 1941–1947 гг.) выполняются регулярные метеорологические наблюдения, включая измерения солнечной коротковолновой радиации и визуальные определения количества и типа облачности. Для выполнения исследований мы воспользовались рядами суточных сумм солнечной суммарной радиации, начиная с 1985 г. (начало актинометрических наблюдений в ГМО «Баренцбург»), данными о характеристиках облачности (балл общей облачности) с 1966 г. и данными о приземной температуре воздуха (среднемесячные оценки) с 1947 г. Для достижения поставленной цели, в соответствии с программой МПГ, были выполнены следующие задачи:

– создан электронный архив данных количества облачности, температуры воздуха и суммарной радиации по данным наблюдений;

– рассчитаны функции распределения количества общей облачности, как в целом за год, так и отдельно для каждого месяца, с целью определения сезонных особенностей изменчивости;

– исследованы тенденции временных изменений повторяемости ясных и пасмурных дней, как в целом за год, так и отдельно для каждого месяца;

– исследованы изменения суточных сумм приходящей коротковолновой радиации, в целом за сезон, так и отдельно для каждого месяца;

– исследовано влияние изменения количества облачности на приходящую коротковолновую солнечную радиацию;

– рассчитаны по данным стандартных приземных метеорологических наблюдений величины длинноволнового излучения атмосферы;

– исследованы многолетние и внутригодовые (сезонные) изменения длинноволнового излучения атмосферы;

– выявлена взаимосвязь между тенденцией потепления климата архипелага (рост приземной температуры воздуха) и изменения количества облачности и длинноволнового излучения.

На первом этапе исследований авторами были получены срочные данные по количеству общей облачности из различных отечественных и зарубежных источников. Этими источниками являются: National Climatic Data Center (США), база данных ВНИИГМИ-МЦД, гидрометфонды ААНИИ и Мурманского УГМС, архивы ГМО «Баренцбург», а также некоторые интернет ресурсы. Период, который в совокупности охватывают эти наблюдения, составляет 44 года: с 1966 по 2009 гг. Все данные, полученные из различных источников, были объединены и представлены в 10-балльной системе (Код…, 1989). После этого было выполнено суточное осреднение полученного ряда и определены виды функции плотности вероятности распределения количества облачности в пределах каждого месяца, сезона и года. Осреднение количества облачности в пределах суточного интервала времени не является достаточно корректным, но преследует цель получить для анализа максимально продолжительный ряд наблюдений без каких либо пропусков. Функция распределения количества общей облачности является бета-распределением, причем с асимметрией для всех месяцев. Наибольшая повторяемость отмечается для облачности равной 9–10 баллам (пасмурное небо). Из «U-образного» типа распределения повторяемости облачности вытекает необходимость анализа этой характеристики по повторяемости градаций 0–2 и 8–10 баллов за соответствующие периоды (Makshtas, et al., 1999). Параметры, характеризующие бета-распределение количества облачности в каждом месяце, позволили выделить климатические сезоны и их продолжительность, а именно 2 основных и 2 переходных сезона. Для каждого условного сезона характерны свои величины повторяемости крайних градаций (0–2 и 9–10). Для условно зимнего сезона, который длится с декабря по апрель включительно, характерны следующие повторяемости. Для облачности 0–2 балла, повторяемость, в среднем, составила 17 % за месяц, а для облачности, равной 9–10 баллам, она оказалась равной, в среднем, 30–35 %. Для условно летнего сезона, который, в свою очередь, длится с июня по октябрь, характерны следующие повторяемости. Для облачности 0–2 балла, в среднем, менее 5 % за месяц, для 9–10 баллов, в среднем, порядка 50–60 %. Таким образом, можно сделать заключение, что летний сезон на архипелаге Шпицберген характеризуется значительной повторяемостью пасмурного неба и заметно сниженной повторяемостью ясной погоды. Переходные сезоны – условно весенний и осенний, которым соответствуют в нашей классификаци май и ноябрь, – характеризуются следующими оценками повторяемости облачности: 0–2 балла – 10 %, 9–10 баллов – 45 %. На рис. 1 показаны типичные для каждого из сезонов распределения повторяемости облачности, представленные отдельным месяцем.

Рис. 1. Распределение повторяемости количества общей облачности в различные месяцы

Следующим этапом наших исследований стала обработка имеющихся данных приходящей коротковолновой солнечной радиации. Был сформирован электронный архив суточных сумм суммарной радиации ГМО «Баренцбург», охватывающий период с 1985 по 2009 гг. Для оценки межгодовой изменчивости были вычислены годовые суммы суммарной радиации и рассмотрены их временные изменения за весь вышеуказанный период. Изменения во времени годовых сумм суммарной радиации, а также данные об изменении величин повторяемости пасмурного и ясного неба представлены на рис. 2.

Как следует из представленного рис. 2, наблюдается тенденция увеличения повторяемости пасмурного неба и одновременно с ней тенденция уменьшения количества приходящей солнечной коротковолновой радиации. Необходимо отметить наличие прямой зависимости повторяемости ясного неба и сумм суммарной радиации и обратной зависимости для повторяемости пасмурного неба. При этом стоит отметить, что между повторяемостями ясного и пасмурного неба зависимость обратная, что при бета-распределении не является тривиальным результатом. Именно поэтому метод оценки характеристик облачности, основанный на анализе отдельных ее градаций (0–2 и 8–10 баллов), более корректен, чем оценка облачности с помощью величины среднего арифметического. Использование последней не позволяет выявить влияние облачности на приходящую суммарную радиацию, поскольку увеличение максимума и уменьшение минимума на оценку среднего арифметического в общем случае влияет слабо.

Рис. 2. Изменения во времени и линейные тренды повторяемостей ясного и пасмурного неба и годовых сумм суммарной радиации

Мы выполнили совместный анализ изменения характеристик облачности и приходящей суммарной радиации за отдельные месяцы и в среднем за год. Оказалось, что в период с июня по август долговременные тенденции сходны с тенденциями в изменении годовых величин. Многолетняя изменчивость в указанные месяцы в целом соответствует изменению среднегодовых величин, а именно, отмечается уменьшение приходящей суммарной радиации в 2002–2007 гг.

Длинноволновая атмосферная радиация, или нисходящее излучение атмосферы, является одной из важнейших, определяющих термический режим приземного слоя воздуха, составляющих радиационного баланса подстилающей поверхности. В период полярной ночи это единственный радиационный поток, направленный к поверхности. Поскольку инструментальных наблюдений за этой величиной в ГМО «Баренцбург» не проводится, то величина потока длинноволновой радиации была определена расчетным путем. Мы использовали хорошо зарекомендовавшую себя и верифицированную по данным прямым измерений параметризацию, разработанную в Институте Полярных и Морских исследований им. А. Вегенера (K?nig – Langlo et al., 1994; Pirazzin, et al., 2000). Основными метеорологическими элементами, которые используются при расчетах длинноволновой радиации, являются температура и упругость водяного пара в приземном слое воздуха, балл общей облачности. В расчетную формулу метода входят также величина излучательной способности атмосферы, постоянная Стефана-Больцмана и эмпирические коэффициенты, подобранные для условий архипелага Шпицберген.

Таким образом, имея в распоряжении срочные данные по баллу общей облачности и температуре приземного слоя воздуха за период с 1966 по 2009 гг., мы рассчитали длинноволновое излучение атмосферы за этот период. Величины потоков за каждый срок затем суммировались, чтобы получить месячные и годовые суммы по аналогии с суммами суммарной солнечной радиации. Поскольку длинноволновое излучение, в соответствии с формулой, полученной в работе (K?nig – Langlo, et al., 1994), в значительной степени определяется количеством облачности, то кривые, отображающие временную изменчивость годовых сумм длинноволнового излучения атмосферы и величины повторяемости пасмурного неба в целом очень подобны. Результаты представлены на рис. 3.

Рис. 3. Изменения во времени и линейные тренды повторяемостей ясного и пасмурного неба и годовых сумм нисходящей длинноволновой радиации атмосферы

Из анализа временных серий следует, что изменение повторяемости пасмурного неба оказывает определяющее воздействие на величину длинноволновой атмосферной радиации. При этом, в отличие от рассмотренного выше случая с приходящей суммарной коротковолновой радиацией, изменения повторяемости ясного неба оказывают незначительное влияние на изменчивость длинноволнового излучения атмосферы. Таким образом, наблюдаемое за исследуемый период увеличение количества длинноволнового излучения атмосферы определяется в основном увеличением величины повторяемости пасмурного неба на архипелаге Шпицберген. В совокупности это способствует возникновению хорошо известного в климатологии парникового эффекта. Следствием последнего, как следует из рис. 4, и является наблюдаемая во второй половине ХХ века тенденция увеличения температуры приземного слоя воздуха.

Рис. 4. Изменение во времени и линейные тренды среднегодовой температуры воздуха и годовых сумм нисходящей длинноволновой радиации атмосферы

Это дает основание полагать, что выявленные особенности распределения облачности (бета-распределение), являются одной из наиболее значимых причин потепления климата на архипелаге Шпицберген.

Учитывая вышесказанное, можно сформулировать ряд принципиально важных выводов, имеющих непосредственное отношение к объяснению климатических тенденций, наблюдаемых на архипелаге Шпицберген во второй половине ХХ века:

– наблюдается уменьшение среднегодовых сумм приходящей коротковолновой солнечной радиации за период 1985–2009 гг.;

– связь изменений характеристик облачности и суммарной радиации определяется повторяемостью пасмурного (8–10 баллов) и ясного неба (0–2 балла).

– характер временной изменчивости длинноволновой атмосферной радиации обусловлен изменчивостью повторяемости пасмурного неба;

– зафиксирован значимый тренд увеличения величины повторяемости пасмурного неба, что, в свою очередь, способствует увеличению длинноволнового излучения атмосферы и, вследствие парникового эффекта, увеличению приземной температуры воздуха;

– характер многолетней изменчивости суммарной радиации также обусловлен увеличением повторяемости пасмурного неба.

В заключение необходимо отметить, что мероприятия, запланированные и выполненные в рамках исследований по программе МПГ 2007–2009, позволили впервые выполнить исследования изменчивости ряда характеристик климата архипелага Шпицберген. Коллективу авторов, представляющих организации Росгидромета (ААНИИ, МУГМС) и специалистов Санкт-Петербургского государственного университета, удалось собрать, обобщить и проанализировать уникальные данные срочных метеорологических и актинометрических наблюдений, выполненных на архипелаге Шпицберген. Оценки тенденций временной изменчивости характеристик облачности, потоков суммарной радиации и нисходящего излучения атмосферы представляются крайне важными, поскольку радиационные факторы климата являются определяющими в процессах таяния снежно-ледяного покрова в Арктике.

Исследования, выполненные в рамках МПГ, будут продолжены в направлении сравнения полученных нами результатов с данными наблюдений, проводимых на исследовательской станции Норвежского Полярного института в поселке Нью-Алесун. Актинометрические наблюдения там выполняются с 1975 г., при этом все составляющие радиационного баланса подстилающей поверхности, включая длинноволновое излучение атмосферы, регистрируются раздельно. Это даст возможность оценить не только временную, но и пространственную изменчивость характеристик облачности и радиационных составляющих. При этом, поскольку для актинометрических наблюдений на российских и зарубежных станциях, расположенных на Шпицбергене, используются приборы разных производителей, необходимо учитывать этот факт и, по возможности, вносить необходимые корректировки, проводя специальные интеркалибрационные измерения.

Литература

Анциферова А.Р., Короткова Т.Д., Семенов А.В., Сиеккинен Е.Д. Результаты комплексных гидрометеорологических наблюдений и мониторинга загрязнения окружающей среды на Архипелаге Шпицберген. Материалы Международной научной конференции – «Природа шельфа и архипелагов Восточной Арктики. Комплексные исследования природы Шпицбергена» / Под ред. акад. Матишова Г.Г. ГЕОС. 2010. С. 338–346.

<< 1 ... 8 9 10 11 12 13 >>
На страницу:
12 из 13