Оценить:
 Рейтинг: 0

Шахматы. Первое приближение

Год написания книги
2020
Теги
1 2 3 4 5 ... 7 >>
На страницу:
1 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля
Шахматы. Первое приближение
Игорь Александрович Брыгов

В учебнике последовательно и системным образом представлен учебный и методический материал для изучения шахмат на начальном этапе обучения. Учебник в ненавязчивой игровой и познавательной форме способствует формированию целостного и системного мышления. Благодаря образному, местами философскому и очень живому, легкому для восприятия читателя, изложению материала, а также иллюстрациям и вопросам для самопроверки, представленные в учебнике сложные и очень сложные понятия и темы становятся легки для восприятия школьника, что делает обучение по этому учебнику приятным времяпровождением.

Шахматы. Первое приближение. Учебник адаптирован под учебный план школьных занятий по шахматам(из расчета одной главы на одну учебную неделю и является первым представителем из комплекта учебников и рабочих тетрадей автора для разных уровней подготовки.

Учебник предназначен для обучения игре в шахматы учеников начальной школы, но непременно будет интересен и читателям любого возраста.

Игорь Брыгов

Шахматы. Первое приближение

Рецензенты: Глек И. В. международный гроссмейстер по шахматам;

Ляпустин А. Г., кандидат философских наук, старший преподаватель кафедры философии гуманитарных факультетов философского факультета МГУ им. М. В. Ломоносова.

ISBN 978-5-6044536-6-7

«Ужасно интересно все то, что неизвестно; все то, что неизвестно, ужасно интересно»

    (Из нашего прошлого – через настоящее – в наше будущее)

«Каждый взрослый происходит из ребенка»

    (из непреложных истин)

«В душе каждый взрослый – это ребенок»

    (утверждение, требующее доказательства лично)

Коротенькое введение

Здравствуйте, дорогие читатели! Вы держите в руках книгу, которая создавалась очень долго. Насколько? В голове созрел замысел 15 лет назад, когда у меня появились первые ученики. Теперь я преподаю шахматы в одной из лучших школ Москвы, и вы являетесь моим строгим критиком.

«Занятия – почему так называются? – пояснил грифон. – Потому что на занятиях мы у нашего учителя ум занимаем…

А как все займем и ничего ему не оставим, тут же и кончим (образование). В таких случаях говорят: «Ему ума не занимать». Понял?»

    (Льюис Кэролл, «Алиса в Стране чудес»)

Говорят: «У шахматистов ума много». И я с большим удовольствием вам его займу!

Понравятся шахматы? И вы будете с ними всегда? Тогда моя книга и старания не зря. Не понравятся? Не думаю! Итак – в путь!

    Искренне Ваш, автор

Глава 1. Короли, капуста, ослик и синхрофазотрон

«Сначала мы, как полагается, чихали и пищали. А потом мы принялись за 4 (четыре) действия арифметики:

Скольжение, причитание, умиление и изнеможение»

    (Льюис Кэролл «Алиса в Стране чудес»)

Мы с вами живем в век гигантских скоростей, компьютеризации всех или почти всех областей жизни. У каждого из вас имеется электронное устройство, и даже не одно. Вы пользуетесь им, не зная, и не особенно напрягаясь, принципа действия, которого вам не скажут 99 % взрослых.

Парадокс – слишком сложное – перетекает в простейшее, квадратура круга.

В моем классическом школьном восприятии информация изучалась, воспринималась через изучение массы книг, многие из которых были ценными, некоторые, несмотря на большой объем, не очень удачными. Теперь ситуация изменилась: пара кликов, и информация под рукой. Что не поменялось? Систематизация и комбинация фактов.

Компьютер может многое, но он не является творцом. Человек должен быть первым в том, что касается стратегического планирования в любой области. Последнее утверждение начинает казаться спорным, особенно в свете появления нового поколения компьютеров, которому присвоено название – искусственный интеллект. Искусственный интеллект просчитывает миллионы вариантов событий.

Детские ошибки программирования остались в прошлом. Например: советские ученые решили создать суточный рацион питания человека с точки дешевого (в ценах СССР) оптимума. Ввели данные. Ответ обескуражил! Двадцать килограммов свежей капусты. Другой пример программирования – уже человека (французским философом – Буриданом). Он сформулировал «неразрешимую» знаменитую задачу. Стоит ослик, слева от него стоит стог сена, но и справа стоит точно такой же. Подходит время еды. Вопрос: какой стог сена выберет ослик? Ответ философа потрясает: ослик умрет с голоду. Логика такая: ослик очень упрям – стога слева и справа одинаковые – будет выбирать – предпочтения нет – умрет с голоду. При этом не учтен только один фактор: ослик хочет жить.

Существует две ипостаси развития события – логика и обман (блеф). Логика – предмет нашего учебника. А вот пример блефа. Военнослужащий (после физфака) красит на высоте деталь сверхсекретной ракеты, внезапная проверка вооружения высокой инспекцией. Ведерко с краской остается на ракете. Вопрос высокой комиссии, смотрящей на ведро: «Что это?» Ответ: «Новейший синхрофазотрон». К сожалению многих, но факт: блеф проходит только с человеком. Эмоций же у искусственного интеллекта нет. Победить искусственный интеллект можно только глубиной логики. Многие вещи, еще недавно бывшие фантастикой, сегодня, во многом благодаря искусственному интеллекту, стали фактами жизни. И если человек не хочет быть на обочине созидательных событий, ему надо изменять инерцию сознания. Удивительно, но факт: мерой сравнения разумности двух различных искусственных интеллектов является игра – шахматы. Этакий градусник разумности. Почему шахматы, а не какая другая стратегия? Ответ вас удивит: она бесконечна.

Кто автор игры? Откуда она родом? Вопросы остаются в воздухе. Правильный квадрат 8–8. Тридцать две фигуры. И завораживающая бесконечность продолжений игры. Которая до сих пор не просчитана, в которой можно реализовать не разгаданную соперником фантастическую стратегию победы.

Постулаты игры можно формулировать так:

1) победа – любым не противоречащим игре способом;

2) теоретическая бесконечность пребывания фигур на доске;

2.1) при ненахождении конечного и окончательного алгоритма победы

В процессе моего повествования очень важен плотный контроль над всеми входящими нюансами – поэтому буду пунктуальным. Итак, пора познакомиться с доской…

Подглава 1. Доска

Первые данные о шахматах датируются вторым веком нашей эры. Индия, Месопотамия, затем Арабский Восток, затем, по известным источникам, через арабские завоевания Сицилия, Испания. Далее военный характер игры понравился европейцам, и через обязательное обучение в дворянской среде шахматы стали известны всей Европе. К нам в Россию (Русь) первые шахматы попали, скорее всего, по известному торговому пути из Скандинавии (из варяг) в Персию (в греки), по крайней мере, новгородские раскопки датируют шахматы восьмым веком нашей эры. С той поры шахматы практически не изменились. Единственное крупное изменение коснулось королевы или ферзя (королевский указ Изабеллы испанской). И всегда была шахматная доска.

Диаграмма 1

Геометрия шахматной доски парадоксальна. Осуществляются принципы не евклидовой геометрии.

В средней школе изучается так называемая евклидовая геометрия. Одна из основных аксиом (утверждений, не подлежащих ревизии, пересмотру) которой, следующая: кратчайшим расстоянием между двумя точками – является одна прямая линия. На шахматной доске таких прямых может быть несколько (от одной до 357 – движение от поля е1 до поля е8). Движение фигур может и осуществляется как по традиционным прямым, так и по ломаным линиям. Общее расстояние при этом не меняется.

Диаграмма 2

Эта позиция на доске возникла на доске после ходов:

1) d3 – d6; 2)e3 – e6; 3) b3 – b6; 4) g3 – g6; 5) c3 – c6; 4) f3 – f6; 5) c4 – c5; 6) f4 – f5; 7) Kc3 – Kc6; 8) Kf3 – Kf6; 9); Лb1 – Лb8; 10) Лg1 – Лg8.

Она носит название «табия “Альмуджаннах”». Мы видим магический квадрат, где сумма чисел каждой строки каждого столбца, а также двух главных диагоналей равна 260. Этот же рисунок, только без фигур, будет предметом дальнейшей работы. Итак.

Что видимо – принцип построения квадрата есть, и его построение таково: в углах доски правый нижний и левый верхний – соответственно, начало и конец нумерации полей цифры 1 и 64 = 65, левый нижний и правый верхний 8 и 57 = 65. Записывая углы, соседние цифры записываем по ходу ряда, соответственно, 63, 58, 2, 7. Верхний ряд – промежуток между углами 3, 4, 5, 6. Нижний ряд – промежуток между углами 59, 60, 61, 62. Второй нижний ряд – к первому ряду прибавляем или отнимаем 8 (только без отрицательных значений и суммы цифр больше 65). Седьмой ряд – отнимаем или прибавляем цифру 8 (только без отрицательных значений и сумму цифр больше 65). Внутренние четыре ряда заполняем, отталкиваясь от поля h7–49, h3–48, g3–47, a3–41, b3–42, и поднимаясь выше – (минус) 8. Внутренний квадрат 4 на 4 с поля f3–19 по строчке 20, 21, 22 и +(плюс) 8 на каждое поле вверх. Вывод: поля равнозначные следующие (по парам):

h1 – a8, g1 – b8, a1 – h8, b1 – g8, c8 – f1, d8 – e1, e8 – d1, f8 – c1, h2 – a7, g2 – b7, f2 – c7, e2 – d7, d2 – e7, c2 – f7, b2 – g7, a2 – h7, h3 – a6, b6 – g3, c6 – f3, c3 – f6, d3 – e6, e3 – d6, b3 – g6, a3 – h6, a4 – h5, b4 – g5, c4 – f5, d4 – e5, e4 – d5, f4 – c5, g4 – b5, h4 – a5.
1 2 3 4 5 ... 7 >>
На страницу:
1 из 7

Другие электронные книги автора Игорь Александрович Брыгов