Оценить:
 Рейтинг: 0

Как ломаются спагетти и другие задачи по физике

Жанр
Год написания книги
2022
Теги
<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля
Подсказка

Пожалуй, единственное, что можно здесь сказать, – эту задачу вполне решают обыкновенные школьники средних классов.

Решение

Первым делом подмечаем, что любая встречная пара сгустков, движущихся с одинаковой скоростью, будет встречаться на кольце ровно два раза в диаметрально противоположных точках. Если мы хотим задействовать таким образом восемь точек, то минимальное количество встречных пар – четыре.

Рис. 2. Оптимальная последовательность сгустков в кольце

Четыре встречные пары можно организовать двумя способами. Первый вариант: один сгусток в одну сторону, а четыре – в другую; всего пять сгустков. Второй вариант: в обе стороны летят по два сгустка – всего четыре. Значит, второй вариант более оптимальный.

Осталось подобрать взаимное расположение сгустков так, чтобы все четыре попарных комбинации встречались в указанных местах. Пример такого расположения показан на рис. 2. Это и есть решение задачи.

Послесловие

У решения есть одна неожиданная особенность: оно менее симметрично, чем постановка задачи. Никакого глубокого вывода отсюда не следует, но, как показывает опыт, бывает так, что эта несимметричность становится препятствием при поиске ответа: мозг подсознательно ожидает, что решение будет столь же симметричным, как и условие.

Любопытно, что и в реальности, на самых первых этапах запуска и отладки БАК применялась примерно такая схема. В настоящем кольце этого коллайдера столкновения происходят не в восьми, а в четырех точках (с номерами 1, 2, 5, 8), вокруг которых построены крупные детекторы ATLAS, ALICE, CMS и LHCb. Но расположены они все равно в вершинах правильного восьмиугольника. Благодаря этому при запуске коллайдера можно было проверить работоспособность всех детекторов с минимальным количеством сгустков в пучках. А уже затем, когда техники убедились в стабильности пучков и надежности аппаратуры, они начали планомерно повышать интенсивность. В пике интенсивности в каждом пучке циркулируют более 2000 сгустков. Они следуют друг за другом с интервалом 25 наносекунд, то есть на расстоянии примерно восемь метров друг от друга, и заполняют практически все кольцо. Но подчеркнем, что даже при такой плотной загрузке столкновения происходят только в тех четырех местах, где две вакуумные трубы пересекаются.

Дополнительная информация

Подробную информацию на русском языке об устройстве и научных задачах Большого адронного коллайдера, а также связанную с ним ленту новостей можно найти в специальном проекте на сайте «Элементы»: elementy.ru/LHC (https://elementy.ru/LHC).

БАК – крупнейший, но далеко не единственный научный проект ЦЕРНа, Европейской организации ядерных исследований. О других научных исследованиях, технических разработках и образовательных мероприятиях ЦЕРНа можно узнать на его сайте: home.cern (http://home.cern/).

2. Хоккейная задача

В прошлой задаче мы сразу нырнули в самую современную физику. А теперь давайте вынырнем и обратимся к повседневной жизни, поговорим о спорте. Спорт – это движение, а значит, в нем тоже можно углядеть интересные и подчас неожиданные физические явления. Возьмем, например, хоккей. При кистевом броске хоккеисты часто закручивают шайбу, так что она одновременно скользит по льду и вращается. Если движение шайбы не ограничивать размерами хоккейной коробки, то рано или поздно и вращение, и скольжение остановятся из-за трения о лед. Но что прекратится раньше?

Этот вопрос может удивить: неужели тут есть какие-то общие закономерности?! Да, есть, и мы сейчас их разберем.

Задача

Рассмотрим слегка упрощенную задачу. Пусть вместо шайбы у нас будет однородное узкое и плоское кольцо. Его запускают скользить по горизонтальной поверхности, придав некоторую начальную скорость и некоторое вращение (рис. 1). Между кольцом и поверхностью действует обычное сухое трение: сила трения пропорциональна прижимающей силе, не зависит от модуля скорости проскальзывания и направлена в противоположную от скорости сторону.

Рис. 1. Вращающееся тонкое кольцо скользит по горизонтальной поверхности (вид сверху)

Выясните, что остановится раньше – скольжение или вращение кольца.

Подсказка

Задача может показаться неприступной из-за того, что в условии практически ничего не задано. Нет ни размеров колечка, ни начальных скоростей скольжения и вращения, ни коэффициента трения. На самом деле, когда задача формулируется таким образом, это обычно служит намеком на то, что ответ не будет зависеть от конкретных параметров. Поэтому при решении вы сами можете взять какие-то значения для этих величин, но должны проследить, что они действительно исчезнут из ответа.

Кольцо участвует сразу в двух движениях: скользит и вращается. Из-за векторного сложения поступательного и вращательного движения разные части кольца движутся относительно поверхности в разные стороны (нарисуйте колечко, представьте, как оно движется, и убедитесь, что разные участки действительно в данный момент скользят по поверхности в разных направлениях). Поэтому выберите вначале какой-то маленький участок на кольце и сосчитайте силу трения, действующую именно на это место. Подумайте, как влияет эта сила на вращательное и поступательное движение, и попытайтесь усреднить эти два влияния по всему кольцу.

После этого проанализируйте формулы для трех случаев: когда скорости вращения и движения совпадают, а также когда скорость вращения очень мала или, наоборот, очень велика по сравнению с поступательным движением. Это наведет вас на мысль, как ответить на вопрос задачи.

Решение

Рассмотрим участок кольца, который находится под углом ? к направлению движения (рис. 2). Пусть в данный момент времени скорость центра масс кольца равна v, а скорость вращения обода u = ?R, где ? – угловая скорость вращения в данный момент, а R – радиус кольца. Этот кусочек кольца участвует в поступательном и вращательном движении. Его скорость относительно поверхности показана на рисунке серой стрелкой. Она составляет угол ? с направлением поступательного движения, причем

Рис. 2. Скорости и силы на маленьком участке кольца

Эти выражения выглядят громоздкими, но они получаются из обычных формул сложения двух векторов скоростей.

Сила трения, действующая на этот участок, по модулю равна F = ?mg (здесь m – масса участка кольца) и направлена в противоположную от скорости сторону. У этой силы есть проекция на направление поступательного движения, – F cos ?, и проекция на касательную к кольцу, которая притормаживает вращение, – F sin (? – ?). Не стесняясь, подставим сюда выражения для синуса и косинуса угла ?, а также учтем, что sin (? – ?) = sin ? cos ? – cos ? sin ?:

У этой силы есть также проекция вбок, то есть перпендикулярно поступательному движению, но при усреднении по всему кольцу эта проекция обнулится. В этом можно убедиться математически, если рассмотреть второй участок, находящийся под углом ? – ?. Для него построение аналогичное, две притормаживающие проекции будут такими же, а сила вбок – ровно противоположная.

Для того чтобы посчитать эффект для всего кольца в целом, надо сложить эти силы по всему кольцу, то есть учесть элементы кольца, расположенные под всеми углами ?. Это даст нам два ускорения, притормаживающих поступательное движение и вращение:

Угловые скобки обозначают усреднение по всем углам ?; это последствие того, что мы общую силу поделили на общую массу. При желании его можно выразить через интегралы, но это не обязательно.

Заметьте интересную особенность полученных формул: при замене u на v выражения для a

и a

превращаются друг в друга. Такая «дуальность» задачи автоматически означает, что если бы начальные скорости u и v были равны, то ускорения a

и a

тоже были бы одинаковые и, значит, соотношение u = v выполнялось бы всегда, до самой остановки. А это, в свою очередь, означает, что вращение и скольжение в данном случае прекратятся одновременно. Смотрите, произошло математическое «чудо»: мы, просто глядя на формулы, вдруг получили ответ для нашей задачи, по крайней мере для одного начального состояния!

А что изменится, если начальные скорости u и v различаются? Тогда ускорения тоже будут отличаться, и, казалось бы, заранее не понятно, что будет замедляться быстрее. Чтобы выяснить, может ли при этом вращение остановиться раньше скольжения, рассмотрим ситуацию, когда скорость вращения u много меньше скорости поступательного движения v. Тогда для поступательного ускорения мы получим примерно a

= ??g, словно вращения и не было. Для вращательного ускорения a

получим маленькую величину порядка ??g·u/v, поскольку «большой» вклад, пропорциональный синусу, обнулился после усреднения по всем углам (более точное выражение см. в послесловии). Иными словами, если вращение очень медленное, то оно и замедляется намного медленнее, чем скольжение. Можно сказать и так: относительное замедление вращения (a

/u) пропорционально относительному замедлению скольжения (a

/v). Отсюда и следует, что скольжение и вращение не могут прекратиться в разные моменты времени.

Выше мы отметили, что задача математически симметрична относительно замены поступательного движения на вращательное. Поэтому мы совершенно аналогичным способом получаем и второй вывод: если поступательное движение намного медленнее вращения, то и замедляться оно будет намного медленнее вращения. Соответственно, и в этом случае нет никакой возможности остановить скольжение раньше вращения.

Итак, ответ: вращательное и поступательное движение прекратятся одновременно вне зависимости от того, каковы были их начальные скорости.

Послесловие

Анализ формул можно немного продолжить. Когда u много меньше v, усреднение надо произвести более аккуратно, разложив знаменатель дроби в ряд по малому параметру u/v. Ответ для ускорения вращения окажется вдвое меньше той оценки, которую мы привели в ходе решения. Эти два ускорения можно поделить друг на друга и получить простое выражение:

Коэффициент 1/2 имеет вполне осязаемые последствия. Он меньше единицы, и отсюда получается, что отношение u/v, пусть поначалу очень маленькое, будет увеличиваться с течением времени. А поскольку задача математически симметрична относительно замены поступательного движения на вращательное, отсюда можно заключить, что если отношение u/v очень велико, то с течением времени оно будет уменьшаться. Мы приходим к простому выводу: какими бы ни были начальные скорости u и v, в процессе движения они будут не только синхронно уменьшаться (это мы уже установили в ходе решения), но и все больше приближаться друг к другу.

Для тех, кто знаком с дифференциальными уравнениями, отметим, что нечувствительность ответа к конкретному соотношению между начальными скоростями вращения и скольжения имеет простое математическое объяснение: уравнение для отношения u/v имеет «устойчивую неподвижную точку» при u/v = 1. Это значит, что, каким бы ни было начальное значение u/v, за счет взаимного влияния вращения и скольжения система сама стремится к этому значению в ходе эволюции во времени.

Если бы мы вместо кольца взяли однородный плоский диск, то вывод о существовании устойчивой неподвижной точки остался бы в силе, но ее значение сдвинулось бы и составило примерно 1,53. А если бы вместо плоского диска мы взяли выпуклую или вогнутую форму («чашку», поставленную прямо или вверх дном), то устойчивая неподвижная точка вообще исчезла бы, и тогда вращение и скольжение прекращались бы в разные моменты времени.

Любопытно, что эта довольно простая по постановке задача была проанализирована в деталях совсем недавно. Первые подробные расчеты были опубликованы в 1985 г., причем статья так и называлась: «К вопросу о движении хоккейной шайбы»[1 - Voyenli K. and Eriksen E. On the motion of an ice hockey puck // American Journal of Physics, 1985, vol. 53, p. 1149. DOI: 10.1119/1.14071.]. Анализ более сложных случаев был проведен уже в 2000-х гг., и тогда же были поставлены прямые эксперименты, которые подтвердили расчеты[2 - Farkas Z., Bartels G., Unger T., and Wolf D. E. Frictional Coupling between Sliding and Spinning Motion // Physical Review Letters, 2003, vol. 90, 248302. DOI: 10.1103/PhysRevLett.90.248302.]. Эта система оказалась неожиданно богата на явления, как с точки зрения математических законов (взаимное влияние поступательной и вращательной степеней свободы), так и возможных прикладных аспектов.

<< 1 2 3 4 >>
На страницу:
2 из 4