Оценить:
 Рейтинг: 0

Математическая стодневка. Сто задач до нового года

Год написания книги
2021
<< 1 2 3 4 5 >>
На страницу:
3 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

Натуральное число называется кратно совершенным (или   мультисовершенным), если сумма всех его делителей кратна ему самому.

Будет ли число предстоящего года кратно совершенным?

ЗАДАЧА 17

(9 октября)

Натуральное число называется неприкасаемым, если оно не равно сумме собственных делителей ни одного другого натурального числа.

Является ли число предстоящего года неприкасаемым?

ЗАДАЧА 18

(10 октября)

Число, которое кратно сумме своих цифр, называется числом харшад (в переводе с санcкрита «великая радость»).

Будет ли число предстоящего года числом харшад?

ЗАДАЧА 19

(11 октября)

Существует ли натуральное число, сумма цифр которого равна номеру предстоящего года?

Если существует, то будет ли оно единственным?

Если таких чисел несколько, то найдите среди них наименьшее.

Будет ли множество таких чисел бесконечным?

Если множество таких чисел конечно, то найдите наибольшее.

ЗАДАЧА 20

(12 октября)

Есть ли натуральные числа, имеющие количество делителей равное числу предстоящего года?

ЗАДАЧА 21

(13 октября)

Существует ли натуральное число, произведение цифр которого числу предстоящего года?

Если существует, то будет ли оно единственным?

Если таких чисел несколько, то найдите среди них наименьшее.

Будет ли множество таких чисел бесконечным?

Если множество таких чисел конечно, то найдите наибольшее.

ЗАДАЧА 22

(14 октября)

Будет ли число предстоящего года радостным?

Алгоритм, позволяющий установить, является натуральное число радостным или нет, вы найдёте на странице 35.

ЗАДАЧА 23

(15 октября)

Амбициозным называют натуральное число, если в результате определённых действий получается совершенное число.

Действия такие:

– складываются все собственные делители числа;

– затем складываются собственные делители полученной суммы.

Процесс повторяется до тех пор, пока не получится совершенное число или станет понятным, что этого не произойдёт.

Будет ли число предстоящего года амбициозным?

ЗАДАЧА 24

(16 октября)

Число, меньшее суммы своих собственных делителей, называется избыточным.

Будет ли число предстоящего года числом избыточным?

Дополнительные вопросы

1. Может ли избыточное число быть простым?

2. Будут ли простые числа избыточными?

3. Любое ли составное число будет избыточным?

ЗАДАЧА 25

(17 октября)

Число, большее суммы своих собственных делителей, называется недостаточным.
<< 1 2 3 4 5 >>
На страницу:
3 из 5