Агрегируемость данных означает рассмотрение информации на различных уровнях ее обобщения. В информационных системах степень детальности представления информации для пользователя зависит от его уровня: аналитик, пользователь, управляющий, руководитель.
Историчность данных предполагает обеспечение высокого уровня статичности собственно данных и их взаимосвязей, а также обязательность привязки данных ко времени.
Прогнозируемость данных подразумевает задание функций прогнозирования и применение их к различным временным интервалам.
Многомерность модели данных означает не многомерность визуализации цифровых данных, а многомерное логическое представление структуры информации при описании и в операциях манипулирования данными.
По сравнению с реляционной моделью многомерная организация данных обладает более высокой наглядностью и информативностью. Для иллюстрации на рис. 2.7 приведены реляционное (а) и многомерное (б) представления одних и тех же данных об объемах продаж автомобилей.
Основные понятия многомерных моделей данных: измерение и ячейка.
Измерение – это множество однотипных данных, образующих одну из граней гиперкуба. В многомерной модели измерения играют роль индексов, служащих для идентификации конкретных значений в ячейках гиперкуба.
Ячейка – это поле, значение которого однозначно определяется фиксированным набором измерений. Тип поля чаще всего определен как цифровой. В зависимости от того, как формируются значения некоторой ячейки, она может быть переменной (значения изменяются и могут быть загружены из внешнего источника данных или сформированы программно) либо формулой (значения, подобно формульным ячейкам электронных таблиц, вычисляются по заранее заданным формулам).
Рис. 2.7. Реляционное и многомерное представление данных
В примере на рис. 2.7 б каждое значение ячейки Объем продаж однозначно определяется комбинацией временного измерения.
В существующих многомерных СУБД используются две основных схемы организации данных: гиперкубическая и поликубическая.
В поликубической схеме предполагается, что в БД может быть определено несколько гиперкубов с различной размерностью и с различными измерениями в качестве граней. Примером системы, поддерживающей поликубический вариант БД, является сервер Oracle Express Server.
В случае гиперкубической схемы предполагается, что все ячейки определяются одним и тем же набором измерений. Это означает, что при наличии нескольких гиперкубов в БД, все они имеют одинаковую размерность и совпадающие измерения.
Основным достоинством многомерной модели данных является удобство и эффективность аналитической обработки больших объемов данных, связанных со временем.
Недостатком многомерной модели данных является ее громоздкость для простейших задач обычной оперативной обработки информации.
Примерами систем, поддерживающими многомерные модели данных, является Essbase, Media Multi-matrix, Oracle Express Server, Cache. Существуют программные продукты, например Media/MR, позволяющие одновременно работать с многомерными и с реляционными БД.
Объектно-ориентированная модель
В объектно-ориентированной модели при представлении данных имеется возможность идентифицировать отдельные записи базы данных. Между записями и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования.
Стандартизированная объектно-ориентированная модель описана в рекомендациях стандарта ODMG-93 (Object Database Management Group – группа управления объектно-ориентированными базами данных).
Рассмотрим упрощенную модель объектно-ориентированной БД. Структура объектно-ориентированной БД графически представима в виде дерева, узлами которого являются объекты. Свойства объектов описываются некоторым стандартным типом или типом, конструируемым пользователем (определяется как class). Значение свойства типа class есть объект, являющийся экземпляром соответствующего класса. Каждый объект-экземпляр класса считается потомком объекта, в котором он определен как свойство. Объект-экземпляр класса принадлежит своему классу и имеет одного родителя. Родовые отношения в БД образуют связную иерархию объектов. Пример логической структуры объектно-ориентированной БД библиотечного дела приведен на рис. 2.9. Здесь объект типа Библиотека является родительским для объектов-экземпляров классов Абонент, Каталог и Выдача. Различные объекты типа Книга могут иметь одного или разных родителей. Объекты типа Книга, имеющие одного и того же родителя, должны различаться, по крайней мере, инвентарным номером (уникален для каждого экземпляра книги), но имеют одинаковые значения свойств isbn, удк, название и автор.
Логическая структура объектно-ориентированной БД внешне похожа на структуру иерархической БД. Основное различие между ними состоит в методах манипулирования данными.
Для выполнения действий над данными в рассматриваемой модели БД применяются логические операции, усиленные объектно-ориентированными механизмами инкапсуляции, наследования и полиморфизма.
Инкапсуляция ограничивает область видимости имени свойства пределами того объекта, в котором оно определено. Так, если в объект типа Каталог добавить свойство, задающее телефон автора книги и имеющее название телефон, то мы получим одноименные свойства у объектов Абонент и Каталог. Смысл такого свойства будет определяться тем объектом, в который оно инкапсулировано.
Наследование, наоборот, распространяет область видимости свойства на всех потомков объекта. Так, всем объектам типа Книга, являющимся потомками объекта типа Каталог, можно приписать свойства объекта-родителя: isbn, удк, название и автор. Если необходимо расширить действие механизма наследования на объекты, не являющиеся непосредственными родственниками (например, между двумя потомками одного родителя), то в их общем предке определяется абстрактное свойство типа abs. Так, определение абстрактных свойств билет и номер в объекте Библиотека приводит к наследованию этих свойств всеми дочерними объектами Абонент, Книга и Выдача. Не случайно, поэтому значения свойства билет классов Абонент и Выдача, показанных на рис. 2.9, являются одинаковыми – 00015.
Полиморфизм в объектно-ориентированных языках программирования означает способность одного и того же программного кода работать с разнотипными данными. Другими словами, он означает допустимость в объектах разных типов иметь методы (процедуры или функции) с одинаковыми именами. Во время выполнения объектной программы одни и те же методы оперируют с разными объектами в зависимости от типа аргумента. Применительно к рассматриваемому примеру полиморфизм означает, что объекты класса Книга, имеющие разных родителей из класса Каталог, могут иметь разный набор свойств. Следовательно, программы работы с объектами класса Книга могут содержать полиморфный код.
Поиск в объектно-ориентированной БД состоит в выяснении сходства между объектом, задаваемым пользователем, и объектами, хранящимися в БД.
Рис. 2.9. Логическая структура БД библиотечного дела
Основным достоинством объектно-ориентированной модели данных в сравнении с реляционной является возможность отображения информации о сложных взаимосвязях объектов. Объектно-ориентированная модель данных позволяет идентифицировать отдельную запись базы данных и определять функции их обработки.
Недостатками объектно-ориентированной модели являются высокая понятийная сложность, неудобство обработки данных и низкая скорость выполнения запросов.
К объектно-ориентированным СУБД относятся POET, Jasmine, Versant, O2, ODB-Jupiter, Iris, Orion, Postgres.
Лекция 4
БЕЗОПАСНОСТЬ БАЗ ДАННЫХ
В контексте обсуждения баз данных часто совместно используются термины безопасность и целостность, хотя на самом деле, это совершенно разные понятия. Термин безопасность относится к защите данных от несанкционированного доступа, изменения или разрушения данных, целостность – к точности или истинности данных. По-другому их можно описать следующим образом:
– Под безопасностью подразумевается, что пользователям разрешается выполнять некоторые действия.
– Под целостностью подразумевается, что эти действия выполняются корректно.
В современных СУБД поддерживается один из двух широко распространенных подходов к вопросу обеспечения безопасности данных, а именно избирательный подход или обязательный подход, либо оба подхода. В обоих подходах единицей данных или объектом данных, для которых должна быть создана система безопасности, может быть как вся база данных целиком или какой-либо набор отношений, так и некоторое значение данных для заданного атрибута внутри некоторого кортежа в определенном отношении. Эти подходы отличаются следующими свойствами:
– В случае избирательного управления некий пользователь обладает различными правами (привилегиями или полномочиями) при работе с объектами. Более того, разные пользователи обычно обладают и разными правами доступа к одному и тому же объекту. Поэтому избирательные схемы характеризуются значительной гибкостью.
– В случае обязательного управления, наоборот, каждому объекту данных присваивается некоторый классификационный уровень, а каждый пользователь обладает некоторым уровнем допуска. Таким образом, при таком подходе доступом к определенному объекту данных обладают только пользователи с соответствующим уровнем допуска. Поэтому обязательные схемы достаточно жестки и статичны.
Обязательное управление доступом
Требования к обязательному управлению доступом изложены в двух важных публикациях министерства обороны США (Стандарт Правительства США «Trusted Computer System Evaluation Criteria, DOD standard 5200.28 – STD, December, 1985», описывающий защищенные архитектуры информационных систем и определяющий уровни защиты от A1 (наивысшего) до D (минимального)), которые неформально называются «оранжевой книгой» и «розовой книгой». В «оранжевой книге» перечислен набор требований к безопасности для некой «надежной вычислительной базы», а в «розовой книге» дается интерпретация этих требований для систем управления базами данных.
В этих документах определяется четыре класса безопасности – D, C, B и A. Говорят, что класс D обеспечивает минимальную защиту (данный класс предназначен для систем, признанных неудовлетворительными), класс С – избирательную защиту, класс В – обязательную, а класс А – проверенную защиту.
Избирательная защита. Класс С делится на два подкласса – С1 и С2 (где подкласс С1 менее безопасен, чем подкласс С2), которые поддерживают избирательное управление доступом в том смысле, что управление доступом осуществляется по усмотрению владельца данных.
Согласно требованиям класса С1 необходимо разделение данных и пользователя, т.е. наряду с поддержкой концепции взаимного доступа к данным здесь возможно также организовать раздельное использование данных пользователями.
Согласно требованиям класса С2 необходимо дополнительно организовать учет на основе процедур входа в систему, аудита и изоляции ресурсов.
Обязательная защита. Класс В содержит требования к методам обязательного управления доступом и делится на три подкласса – В1, В2 и В3 (где В1 является наименее, а В3 – наиболее безопасным подклассом).
Согласно требованиям класса В1 необходимо обеспечить «отмеченную защиту» (это значит, что каждый объект данных должен содержать отметку о его уровне классификации, например: секретно, для служебного пользования и т.д.), а также неформальное сообщение о действующей стратегии безопасности.
Согласно требованиям класса В2 необходимо дополнительно обеспечить формальное утверждение о действующей стратегии безопасности, а также обнаружить и исключить плохо защищенные каналы передачи информации.
Согласно требованиям класса В3 необходимо дополнительно обеспечить поддержку аудита и восстановления данных, а также назначение администратора режима безопасности.
Проверенная защита. Класс А является наиболее безопасным и согласно его требованиям необходимо математическое доказательство того, что данный метод обеспечения безопасности совместим и адекватен заданной стратегии безопасности.
Коммерческие СУБД обычно обеспечивают избирательное управление на уровне класса С2. СУБД, в которых поддерживаются методы обязательной защиты, называют системами с многоуровневой защитой.