Оценить:
 Рейтинг: 0

Discrete Math. Practice. For students of technical specialties

Автор
Год написания книги
2020
<< 1 ... 3 4 5 6 7 8 >>
На страницу:
7 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Solution: Let m = | √ |x||

Because the rules ≤ |x|=n <=> nx <n1 should m ≤ √ |x| <m+1

m

 ≤ |x| (<m+1)

From the rules: x <n <=> |x| <n

n ≤x <=> n <|x|,where nan integer

must be m

 ≤ x (<m+1)

m ≤ √ x <m+1

From (*) => m= | √

Thus | √ |x||= m= | √x|.

Problem No. 31: u

 = -u

 +2u

u

 = 0, u

 = 1

Solution: here K (x) =1+x-2x

. We calculate: D (x) =K (x) u (x) = (1+x-2x

) (u

 + u

x+…) 0+x+0=x

We get: u (x) = ((x) \ (1+x-2x

))

The next step is the expansion of the denominator K (x) to the product (a

x) (1a

x), then 〈

and 〈

 – the roots of the quadratic equation: 1+x-2x

=0

and

a

=1

a

= ((-1) \ (2))

arrive to the formula: u (x) = ((x) \ (12+x-x

)) = ((x) \ ((1-x) (1+ ((x) \ (2)))))

We find the decomposition into a sum of simple fractions by the method of indefinite coefficients: ((x) \ ((1-x) (1+ ((x) \ (2))))) = ((A) \ ((1-x))) + ((B) \ (1+ ((x) \ (2))))

We obtain a system of linear equations: ((1) \ (2)) AB=1B+A=0

Its solution: A= ((2) \ (3)),B= ((-2) \ (3)). Hence: u (x) = (((2) \ (3)) \ (1-x)) + (((-2) \ (3)) \ (1- ((x) \ (2)))) = ((2) \ (3)) ∑

1

x

– ((2) \ (3)) ∑

 ((-1) \ (3))

x

This leads to the answer: u

= ((2) \ (3)) – ((2) \ (3)) * ((-1) \ (2))

Answer: u

= ((2) \ (3)) – ((2) \ (3)) * ((-1) \ (2))

Task number 32: 15 students shook hands at a meeting of students, three people made 4 handshakes, and others – 3. How many students were there.
<< 1 ... 3 4 5 6 7 8 >>
На страницу:
7 из 8