Оценить:
 Рейтинг: 0

A History of Inventions, Discoveries, and Origins, Volume II (of 2)

Год написания книги
2017
<< 1 2 3 4 5 6 ... 81 >>
На страницу:
2 из 81
Настройки чтения
Размер шрифта
Высота строк
Поля

In the Netherlands, France and England, lending-houses were first known under the name of Lombards, the origin of which is evident. It is well known that in the thirteenth and following centuries many opulent merchants of Italy, which at those periods was almost the only part of Europe that carried on an extensive trade, were invited to these countries, where there were few mercantile people able to engage deeply in commerce. For this reason they were favoured by governments in most of the large cities; but in the course of time they became objects of universal hatred, because they exercised the most oppressive usury, by lending at interest and on pledges. They were called Longobardi or Lombardi, as whole nations are often named after a part of their country, in the same manner as all the Helvetians are called Swiss, and the Russians sometimes Moscovites. They were, however, called frequently also Caorcini, Caturcini, Caursini, Cawarsini, Cawartini, Bardi, and Amanati; names, which in all probability arose from some of their greatest houses or banks. We know, at any rate, that about those periods the family of the Corsini were in great consideration at Florence. They had banks in the principal towns for lending money; they demanded exorbitant interest; and they received pledges at a low value, and retained them as their own property if not redeemed at the stated time. They eluded the prohibition of the church against interest when they found it necessary, by causing the interest to be previously paid as a present or a premium; and it appears that some sovereigns borrowed money from them on these conditions. In this manner did Edward III. king of England, when travelling through France in the year 1329, receive 5000 marks from the bank of the Bardi, and give then in return, by way of acknowledgement, a bond for 7000[50 - Fœdera, vol. iv. p. 387.]. When complaints against the usurious practices of these Christian Jews became too loud to be disregarded, they were threatened with expulsion from the country, and those who had rendered themselves most obnoxious on that account, were often banished, so that those who remained were obliged to conduct themselves in their business with more prudence and moderation. It is probable that the commerce of these countries was then in too infant a state to dispense altogether with the assistance of these foreigners. In this manner were they treated by Louis IX. in 1268, and likewise by Philip the Bold; and sometimes the popes, who would not authorise interest, lent their assistance by prohibitions, as was the case in regard to Henry III. of England in 1240.

In the fourteenth century, the Lombards in the Netherlands paid to government rent for the houses in which they carried on their money transactions, and something besides for a permission. Of this we have instances at Delft in 1313, and at Dordrecht in 1342[51 - Beschryving der Stadt Delft. 1729, fol. p. 553.]. As in the course of time the original Lombards became extinct, these houses were let, with the same permission, for the like employment[52 - Salmasius de Fœnore trapezitico. Lugd. 1640, 8vo, p. 744.]; but governments at length fixed the rate of interest which they ought to receive, and established regulations for them, by which usurious practices were restrained. Of leases granted on such conditions, an instance occurs at Delft in the year 1655. In 1578, William prince of Orange recommended to the magistrates of Amsterdam Francis Masasia, one of the Lombards, as they were then called, in order that he might obtain for him permission to establish a lending-house[53 - De Koophandel van Amsterdam. Rott. 1780, 8vo, i. p. 221.], as many obtained permission to keep billiard-tables, and Jews letters of protection. In the year 1611, the proprietor of such a house at Amsterdam, who during the latter part of his lease had gained by his capital at least thirty-three and a half per cent., offered a very large sum for a renewal of his permission; but in 1614, the city resolved to take the lombard or lending-house into their own hands, or to establish one of the same kind. However odious this plan might be, a dispute arose respecting the legality of it, which Marets[54 - S. de Marets Diss. de trapezitis.] and Claude Saumaise endeavoured to support. The public lending-house or lombard at Brussels was established in 1619; that at Antwerp in 1620, and that at Ghent in 1622. All these were established by the archduke Albert, when he entered on the governorship, with the advice of the archbishop of Mechlin; and on this occasion the architect Wenceslaus Coberger was employed, and appointed inspector-general of all the lending-houses in the Spanish Netherlands[55 - Beyerlinck, Magnum Theatrum Vitæ, tom. v. p. 602.]. Some Italians assert that the Flemings were the first people who borrowed money on interest for their lending-houses; and they tell us that this practice began in the year 1619[56 - Richard, Analysis Concilior. iv. p. 98.]. We are assured also, that after a long deliberation at Brussels, it was at length resolved to receive money on interest at the lending-houses. It however appears certain that in Italy this was never done, or at least not till a late period, and that the capitals of the lending-houses there were amassed without giving interest.

This beneficial institution was always opposed in France; chiefly because the doctors of the Sorbonne could not divest themselves of the prejudice against interest; and some in modern times who undertook there to accommodate people with money on the like terms, were punished by government[57 - Turgot, Mem. sur le prêt à intérest, &c. Par. 1789, 8vo.]. A lending-house however was established at Paris under Louis XIII., in 1626; but the managers next year were obliged to abandon it[58 - Sauval, Hist. de la Ville de Paris.]. In 1695, some persons formed a capital at Marseilles for the purpose of establishing one there according to the plan of those in Italy[59 - Rufel, Hist. de la Ville de Marseille; 1696. fol. ii. p. 99.]. The present mont de piété at Paris, which has sometimes in its possession forty casks filled with gold watches that have been pledged, was, by royal command, first established in 1777[60 - Tableau de Paris. Hamb. 1781. 8vo, i. p. 78.].

[The following is the rate of profit or interest which pawnbrokers in this country are entitled to charge per calendar month. For 2s. 6d. one halfpenny; 5s. one penny; 7s. 6d. three halfpence; 10s. twopence; 12s. 6d. twopence halfpenny; 15s. threepence; 17s. 6d. threepence halfpenny; £1 fourpence; and so on progressively and in proportion for any sum not exceeding 40s. For every sum exceeding 40s. and not exceeding 42s. eightpence; and for every sum exceeding 42s. and not exceeding £10, threepence to every pound, and so on in proportion for any fractional sum. Where any intermediate sum lent on a pledge exceeds 2s. 6d. and does not exceed 40s., a sum of fourpence may be charged in proportion to each £1. Goods pawned are forfeited on the expiration of a year, exclusive of the date of pawning. But it has been held that the property is not transferred, but that the pawnbroker merely has a right to sell the article; and consequently that, on a claim after this period, with tender of principal and interest, the property must be restored if unsold (Walker v. Smith, 5 Barn. and Ald. 439). Pledges must not be taken from persons intoxicated or under twelve years of age. In Great Britain pawnbrokers must take out a license, which costs £15 within the limits of the old twopenny-post, and £7 10s. in other parts. No license is required in Ireland. A second license, which costs £5 15s., is required to take in pledge articles of gold and silver.

From 1833 to 1838 the number of pawnbrokers in the metropolitan district increased from 368 to 386; in the rest of England and Wales, from 1083 to 1194; and in Scotland, from 52 to 88; making a total of 1668 establishments, paying £15,419 for their licenses, besides the licenses which many of them take out as dealers in gold and silver. The business of a pawnbroker was not known in Glasgow until August 1806, when an itinerant English pawnbroker commenced business in a single room, but decamped at the end of six months; and his place was not supplied until June 1813, when the first regular office was established in the west of Scotland for receiving goods in pawn. Other individuals soon entered the business, and the practice of pawning had become so common, that in 1820, in a season of distress, 2043 heads of families pawned 7380 articles, on which they raised £739 5s. 6d. Of these heads of families 1375 had never applied for or received charity of any description; 474 received occasional aid from the relief committee, and 194 were paupers. The capital invested in this business in 1840 was about £26,000. Nine-tenths of the articles pledged are redeemed within the legal period. There are no means of ascertaining the exact number of pawnbrokers’ establishments in the large towns of England. In 1831, the number of males above the age of twenty employed in those at Manchester was 107; at Liverpool, 91; Birmingham, 54; Bristol, 33; Sheffield, 31.

The following curious return was made by a large pawnbroking establishment at Glasgow to Dr. Cleland, who read it before the British Association in 1836. The list comprised the following articles: – 539 men’s coats, 355 vests, 288 pairs of trowsers, 84 pairs of stockings, 1980 women’s gowns, 540 petticoats, 132 wrappers, 123 duffies, 90 pelisses, 240 silk handkerchiefs, 294 shirts and shifts, 60 hats, 84 bed-ticks, 108 pillows, 262 pairs of blankets, 300 pairs of sheets, 162 bed-covers, 36 tablecloths, 48 umbrellas, 102 bibles, 204 watches, 216 rings, and 48 Waterloo medals. There were about thirty pawnbrokers in Glasgow in 1840. In the manufacturing districts, during the prevalence of strikes, or in seasons of commercial embarrassment, many hundreds of families pawn the greater part of their wearing apparel and household furniture. The practice of having recourse to the pawnbrokers on such occasions is quite of a different character from the habits of dependence into which many of the working classes suffer themselves to fall, and who, “on being paid their wages on the Saturday, are in the habit of taking their holiday clothes out of the hands of the pawnbroker to enable them to appear respectably on the Sabbath, and on the Monday following they are again pawned and a fresh loan obtained to meet the exigencies of their families for the remainder of the week.” It is on these transactions and on such as arise out of the desire of obtaining some momentary gratification that the pawnbrokers make their large profits. It is stated in one of the reports on the poor laws that a loan of threepence, if redeemed the same day, pays annual interest at the rate of 5200 per cent.; weekly, 866 per cent.;

4d., annual interest 3900 per cent., or 650 p. c. weekly;

12d., annual interest 1300 per cent., or 216 p. c. weekly.

It is stated that on a capital of sixpence thus employed (in weekly loans), pawnbrokers make in twelve months 2s. 2d.; on five shillings they gain 10s. 4d.; on ten shillings, 22s. 3¼d.; and on twenty shillings lent in weekly loans of sixpence, they more than double their capital in twenty-seven weeks, and should the goods pawned remain in their hands for the term of twelve months (which seldom occurs), they then frequently derive 100 per cent.[61 - Waterston’s Cyclopædia of Commerce.]]

CHEMICAL NAMES OF METALS

As those metals earliest known, viz. copper, iron, gold, silver, lead, quicksilver and tin, received the same names as the nearest heavenly bodies, which appear to us largest, and have been distinguished by the like characters, two questions arise: Whether these names and characters were given first to the planets or to the metals? When, where, and on what account were they made choice of; and why were the metals named after the planets, or the planets after the metals? The latter of these questions, in my opinion, cannot be answered with any degree of certainty; but something may be said on the subject, which will not, perhaps, be disagreeable to those fond of such researches, and who have not had an opportunity of examining it.

That the present usual names were first given to the heavenly bodies, and at a later period to the metals, is beyond all doubt; and it is equally certain that they came from the Greeks to the Romans, and from the Romans to us. It can be proved also that older nations gave other names to these heavenly bodies at much earlier periods. The oldest appellations, if we may judge from some examples still preserved, seem to have originated from certain emotions which these bodies excited in the minds of men; and it is not improbable that the planets were by the ancient Egyptians and Persians named after their gods, and that the Greeks only adopted or translated into their own language the names which those nations had given them[62 - See Goguet, Origines. Bailly, Hist. de l’Astron. Ancienne.]. The idea that each planet was the residence of a god, or that they were gods themselves, has arisen, according to the most probable conjecture, from rude nations worshiping the sun, which, on account of his beneficent and necessary influence over all terrestrial bodies, they considered either as the deity himself, or his abode, or, at any rate, as a symbol of him. In the course of time, when heroes and persons who by extraordinary services had rendered their names respected and immortal, received divine honours, particular heavenly bodies, of which the sun, moon and planets seemed the fittest, were also assigned to these divinities[63 - Jablonski, Pantheon Ægypt. 1750, p. 49.]. By what laws this distribution was made, and why one planet was dedicated to Saturn and not to another, Pluche did not venture to determine: and on this point the ancients themselves are not all agreed[64 - These contradictions are pointed out by Goguet, in a note, p. 370. A better view of them may be found in Hygini Astronom. (ed. Van Staveren), xlii. p. 496.]. When the planets were once dedicated to the gods, folly, which never stops where it begins, proceeded still further, and ascribed to them the attributes and powers for which the deities, after whom they were named, had been celebrated in the fictions of their mythologists. This in time laid the foundation of astrology; and hence the planet Mars, like the deity of that name, was said to cause and to be fond of war; and Venus to preside over love and its pleasures.

The next question is, Why were the metals divided in the like manner among the gods, and named after them? Of all the conjectures that can be formed in answer to this question, the following appears to me the most probable. The number of the deified planets made the number seven so sacred to the Egyptians, Persians and other nations, that all those things which amounted to the same number, or which could be divided by it without a remainder, were supposed to have an affinity or a likeness to and connexion with each other[65 - Jablonski, Panth. p. 55. Vossius de Idololatria, ii. 34, p. 489. Bruckeri Histor. Philosoph. i. p. 1055.]. The seven metals, therefore, were considered as having some relationship to the planets, and with them to the gods, and were accordingly named after them. To each god was assigned a metal, the origin and use of which was under his particular providence and government; and to each metal were ascribed the powers and properties of the planet and divinity of the like name; from which arose, in the course of time, many of the ridiculous conceits of the alchemists.

The oldest trace of the division of the metals among the gods is to be found, as far as I know, in the religious worship of the Persians. Origen, in his Refutation of Celsus, who asserted that the seven heavens of the Christians, as well as the ladder which Jacob saw in his dream, had been borrowed from the mysteries of Mithras, says, “Among the Persians the revolutions of the heavenly bodies were represented by seven stairs, which conducted to the same number of gates. The first gate was of lead; the second of tin; the third of copper; the fourth of iron; the fifth of a mixed metal; the sixth of silver, and the seventh of gold. The leaden gate had the slow tedious motion of Saturn; the tin gate the lustre and gentleness of Venus; the third was dedicated to Jupiter; the fourth to Mercury, on account of his strength and fitness for trade; the fifth to Mars; the sixth to the Moon, and the last to the Sun[66 - Origenes Contra Celsum, lib. vi. 22. I expected to have received some explanation of this passage from the editors of Origen, and in those authors who have treated expressly on the religious worship of the Persians; but I find that they are quoted neither by Hyde; Philip a Turre, whose Monumenta Veteris Antii is printed in Thesaurus Antiquitat. et Histor. Italiæ; nor by Banier in his Mythology.].” Here then is an evident trace of metallurgic astronomy, as Borrichius calls it, or of the astronomical or mythological nomination of metals, though it differs from that used at present. According to this arrangement, tin belonged to Jupiter, copper to Venus, iron to Mars, and the mixed metal to Mercury. The conjecture of Borrichius, that the transcribers of Origen have, either through ignorance or design, transposed the names of the gods, is highly probable: for if we reflect that in this nomination men at first differed as much as in the nomination of the planets, and that the names given them were only confirmed in the course of time, of which I shall soon produce proofs, it must be allowed that the causes assigned by Origen for his nomination do not well agree with the present reading, and that they appear much juster when the names are disposed in the same manner as that in which we now use them[67 - Borrichius arranges the words in the following manner: “Secundam portam faciunt Jovis, comparantes ei stanni splendorem et mollitiem; tertiam Veneris æratam et solidam; quartam Martis, est enim laborum patiens, æque ac ferrum, celebratus hominibus; quintam Mercurii propter misturam inæqualem ac variam, et quia negotiator est; sextam Lunæ argenteam; septimam Solis auream.” – Ol. Borrichius De Ortu et Progressu Chemiæ.” Hafniæ, 1668, 4to, p. 29. Professor Eichhorn reminded me, as allusive to this subject, of the seven walls of Ecbatana, the capital of Media, the outermost of which was the lowest, and each of the rest progressively higher, so that they overtopped each other. Each was of a particular colour. The outermost was white; the second black; the third purple; the fourth blue; the fifth red, or rather of an orange colour; and the summit of the sixth was covered with silver, and that of the seventh, or innermost, with gold. Such is the account given by Herodotus, i. 98; and it appears to me not improbable that they may have had a relation to the seven planets, though nothing is hinted on that subject by the historian.].

This astrological nomination of metals appears to have been conveyed to the Brahmans in India; for we are informed that a Brahman sent to Apollonius seven rings, distinguished by the names of the seven stars or planets, one of which he was to wear daily on his finger, according to the day of the week[68 - Philostrat. Vita Apollonii, iii. 41, p. 130. How was the ring for Wednesday made? Perhaps it was hollow, and filled with quicksilver. Gesner, in Commentaria Societat. Scien. Gotting. 1753, iii. p. 78, thinks that these rings might have been made or cast under certain constellations.]. This can be no otherwise explained than by supposing that he was to wear the gold ring on Sunday; the silver one on Monday; the iron one on Tuesday, and so of the rest. Allusion to this nomination of the metals after the gods occurs here and there in the ancients. Didymus, in his Explanation of the Iliad, calls the planet Mars the iron star. Those who dream of having had anything to do with Mars are by Artemidorus threatened with a chirurgical operation, for this reason, he adds, because Mars signifies iron[69 - Oneirocritica, v. 37.]. Heraclides says also in his allegories, that Mars was very properly considered as iron; and we are told by Pindar that gold is dedicated to the sun[70 - Isthm. Od. ver. 1. Of the like kind are many passages in Eustathius on Homer’s Iliad, b. xi., and also the following passages of Constantinus Manasses, where he describes the creation of the stars, in his Annales (edit. Meursii, Lugd. 1616), p. 7, and p. 263: “Saturnus nigricabat, colore plumbeo; Jupiter ut argentum splendebat; Mars flammeus conspiciebatur; Sol instar auri puri lucebat; (Venus uti stannum;) Mercurius instar æris rubebat; Luna in morem glaciei pellucida suam et ipsa lucem emittebat,” &c.].

Plato likewise, who studied in Egypt, seems to have admitted this nomination and meaning of the metals. We are at least assured so by Marsilius Ficinus[71 - In his Preface to Critias. Platonis Opera; Francof. 1602, fol. p. 1097.]; but I have been able to find no proof of it, except where he says of the island Atlantis, that the exterior walls were covered with copper and the interior with tin, and that the walls of the citadel were of gold. It is not improbable that Plato adopted this Persian or Egyptian representation, as he assigned the planets to the demons; but perhaps it was first introduced into his system only by his disciples[72 - It is probable that Ficinus had in view a passage in Olympiodori Commentar. in Meteora Arist. Ven. 1551, fol. lib. iii. p. 59.]. They seem, however, to have varied from the nomination used at present; as they dedicated to Venus copper, or brass, the principal component part of which is indeed copper; to Mercury tin; and to Jupiter electrum. The last-mentioned metal was a mixture of gold and silver; and on this account was probably considered to be a distinct metal, because in early periods mankind were unacquainted with the art of separating these noble metals[73 - This distribution, which is ascribed to the Platonists, may be found also in the scholiasts on Pindar, at the beginning of the fifth Isthmian Ode, p. 459.].

The characters by which the planets and metals are generally expressed when one does not choose to write their names, afford a striking example how readily the mind may be induced to suppose a connexion between things which in reality have no affinity or relation to each other. Antiquaries and astrologers, according to whose opinion the planets were first distinguished by these characters, consider them as the attributes of the deities of the same name. The circle in the earliest periods among the Egyptians was the symbol of divinity and perfection; and seems with great propriety to have been chosen by them as the character of the sun, especially as, when surrounded by small strokes projecting from its circumference, it may form some representation of the emission of rays. The semicircle is in like manner the image of the moon, the only one of the heavenly bodies that appears under that form to the naked eye. The character ♄ is supposed to represent the sythe of Saturn; ♃ the thunderbolts of Jupiter; ♂ the lance of Mars, together with his shield; ♀ the looking-glass of Venus; and ☿ the caduceus or wand of Mercury.

The expression by characters adopted among the older chemists agrees with this mythological signification only in the character assigned to gold. Gold, according to the chemists, was the most perfect of metals, to which all others seemed to be inferior in different degrees. Silver approached nearest to it; but was distinguished only by a semicircle, which, for the more perspicuity, was drawn double, and thence had a greater resemblance to the most remarkable appearance of the moon; the name of which this metal had already obtained. All the other metals, as they seemed to have a greater or less affinity to gold or silver, were distinguished by marks composed of the characters assigned to these precious metals. In the character ☿ the adepts discover gold with a silver colour. The cross placed at the bottom, which among the Egyptian hieroglyphics had a mysterious signification[74 - Jablonski, Pantheon Ægypt. i. p. 282, 283, 287; and ii. p. 131. This author makes it the representation of something which cannot be well named. Kircheri Œdipus Ægypt. t. ii. pars ii. p. 399. Romæ, 1653, fol.], expresses, in their opinion, something I know not what, without which quicksilver would be silver or gold. This something is combined also with copper, the possible change of which into gold is expressed by the character ♀. The character ♂ declares the like honourable affinity also; though the half-cross is applied in a more concealed manner; for, according to the most proper mode of writing, the point is wanting at the top, or the upright line ought only to touch the horizontal, and not to intersect it. Philosophical gold is concealed in steel; and on this account it produces such valuable medicines. Of tin one-half is silver, and the other consists of the something unknown: for this reason the cross with the half moon appears in ♃. In lead this something is predominant, and a similitude is observed in it to silver. Hence in its character ♄ the cross stands at the top, and the silver character is only suspended on the right-hand behind it.

The mythological signification of these characters cannot be older than the Grecian mythology; but the chemical may be traced to a much earlier period. Some, who consider them as remains of the Egyptian hieroglyphics[75 - Goguet, ii. pp. 370, 371, considers them as remains of the original hieroglyphics; but he is of opinion that we received them in their present form from the Arabians.], pretend that they may be discovered on the table of Isis, and employ them as a proof of the high antiquity, if not of the art of making gold, at least of chemistry. We are told also that they correspond with many other characters which the adepts have left us as emblems of their wisdom.

If we are desirous of deciding without prejudice respecting both these explanations, it will be found necessary to make ourselves acquainted with the oldest form of the characters, which in all probability, like those used in writing, were subjected to many changes before they acquired that form which they have at present. I can, however, mention only three learned men, Salmasius[76 - Plinianæ Exercitat. in Solinum, p. 874.], Du Cange[77 - Gloss. ad Script. Med. et Infimæ Græcitatis.], and Huet[78 - In his Annotations on Manilii Astronomicon (in usum Delphini). Par. 1679, 4to, p. 80.], who took the trouble to collect these characters. As I am afraid that my readers might be disgusted were I here to insert them, I shall give a short abstract of the conclusion which they form from them; but I must first observe that the oldest manuscripts differ very much in their representation of these characters, either because they were not fully established at the periods when they were written, or because many supposed adepts endeavoured to render their information more enigmatical by wilfully confounding the characters; and it is probable also that many mistakes may have been committed by transcribers.

The character of Mars, according to the oldest mode of representing it, is evidently an abbreviation of the word Θοῦρος, under which the Greek mathematicians understood that deity; or, in other words, the first letter Θ, with the last letter ς placed above it. The character of Jupiter was originally the initial letter of Ζεύς; and in the oldest manuscripts of the mathematical and astrological works of Julius Firmicus the capital Ζ only is used, to which the last letter ς was afterwards added at the bottom, to render the abbreviation more distinct. The supposed looking-glass of Venus is nothing else than the initial letter, a little distorted, of the word Φωσφόρος, which was the name of that goddess. The imaginary sythe of Saturn has been gradually formed from the first two letters of his name Κρόνος, which transcribers, for the sake of dispatch, made always more convenient for use, but at the same time less perceptible. To discover in the pretended caduceus of Mercury the initial letter of his Greek name Στίλβων, one needs only look at the abbreviations in the oldest manuscripts, where they will find that the Σ was once written as Ϲ; they will remark also that transcribers, to distinguish this abbreviation still more from the rest, placed the C thus, ◡; and added under it the next letter τ. If those to whom this deduction appears improbable will only take the trouble to look at other Greek abbreviations, they will find many that differ still further from the original letters they express than the present character ☿ from the Ϲ and τ united. It is possible that later transcribers, to whom the origin of this abbreviation was not known, may have endeavoured to give it a greater resemblance to the caduceus of Mercury. In short, it cannot be denied that many other astronomical characters are real symbols, or a kind of proper hieroglyphics, that represent certain attributes or circumstances, like the characters of Aries, Leo, and others quoted by Salmasius.

But how old is the present form of these characters? According to Scaliger[79 - In his Annotations on Manilii Astron. Strasb. 1665, 4to, p. 460.], they are of great antiquity, because they are to be found on very old gems and rings. If the ring No. 104 in Goræus be old and accurately delineated, this must indeed be true; for some of these characters may be very plainly distinguished on the beazel[80 - In Gorii Thesaurus Gemmarum antiquarum astriferarum, Florent. 1750, 3 vols. fol., I found nothing on this subject. Characters of the moon and of the signs in the zodiac often occur; but no others are to be seen, except in tab. 33, where there is a ring, which has on it the present characters of Mars and Venus. In general the planets are represented by seven small asterisks, or by six and the character of the moon. Besides, the antiquity of this gem cannot be ascertained.]. We are told by Wallerius that they were certainly used by the ancient Egyptians, because Democritus, who resided five years in Egypt, speaks of them in the plainest terms. I do not know whence Wallerius derived this information, but it proves nothing. He undoubtedly alludes to the laughing philosopher of Abdera, who lived about 450 years before our æra, but no authentic writings of his are now extant. Fabricius says that we have a Latin translation of a work of his, De Arte Sacra, Patavii, 1572, which, however, is certainly a production of much later times. I have it now before me from the library of our university; and I find that it is not the whole book, but only an abstract, and written in so extravagant a manner that the deception is not easily discovered. It contains chemical processes, but nothing of the characters of metals; which is the case also with the letters of Democritus, published by Lubbinus[81 - See the collection of Greek letters of Eilh. Lubbinus. Commelin. 1601, 8vo.].

[By way of contrast to the seven metals with which the ancients were acquainted, we may enumerate those known at the present day. They are as follows: —

ZINC

Zinc is one of those metals which were not known to the Greeks[82 - [It has been observed by an anonymous reviewer (British and Foreign Medical Review, vol. viii. p. 361) that a passage in Strabo authorises the belief that the ancients were acquainted with this metal in its separate state, and that it is the false silver, ψευδάργυρον, of that ancient geographer.]], Romans, or Arabians. This we have reason to conjecture, because it has not been distinguished by a chemical character like the rest; but it is fully proved, by our not finding in the works of the ancients any information that appears even to allude to it. I know but of one instance where it is supposed to have been found among remains of antiquity. Grignon pretends that something like it was discovered in the ruins of the ancient Roman city in Champagne[83 - Bulletin des fouilles d’une ville Romaine, p. 11.]. Such an unexpected discovery deserved to have been investigated with the utmost minuteness; but it seems to have been examined only in a very superficial manner; and as that was the case, it is impossible to guess what kind of a metal or metallic mixture this author considered as zinc.

It is not surprising that this metal should have remained so long unknown, for it has never yet been found in the metallic state. Its ores are often and in a great degree mixed with foreign ingredients; and when they are melted, it sublimes in a metallic form, and is found adhering above to the cool sides of the furnace; but a particular apparatus is necessary, else the reduced metal partly evaporates, and is partly oxidized, by which means it appears like an earth, and exhibits to the eye no traces of metal.

That mixture of zinc and copper called at present brass, tomback, pinchbeck, princes-metal, &c., and which was first discovered by ores, abundant in zinc, yielding when melted not pure copper, but brass, was certainly known to the ancients. Mines that contained ores, from which this gold-coloured metal was produced, were held in the highest estimation; when exhausted, the loss of them was regretted; and it was supposed that the metal would never be again found. In the course of time it was remarked, no one knows by what accident, that an ore, which must have been calamine, when added to copper while melting, gave it a yellow colour. This ore was therefore used, though it was not known what metal it contained, in the same manner as oxide of cobalt was employed in colouring glass before mineralogists were acquainted with that metal itself. Aristotle and Strabo speak of an earth of that kind, the use of which in making brass has been retained through every century. Ambrosius, bishop of Milan, in the fourth century; Primasius, bishop of Adrumetum in Africa, in the sixth; and Isidore, bishop of Seville, in the seventh, mention an addition by which copper acquired a gold colour, and which undoubtedly must have been calamine. When in course of time more calamine was discovered, the ancient method of procuring brass from copper-ore that contained zinc was abandoned; and it was found more convenient first to extract from it pure copper, and then to convert it into brass by the addition of calamine.

Those desirous of inquiring further into the knowledge which the ancients had of this metal must examine the meaning of the word cadmia, which seems to have had various significations. This task I have ventured to undertake; and though I cannot clear up everything that occurs respecting it, I shall lay before my readers what information I have been able to obtain on the subject, because perhaps it may amount to somewhat more than is to be found in the works of old commentators. Cadmia signified, then, in the first place, a mineral abounding in zinc, as well as any ore combined with it, and also that zinc-earth which we call calamine. Those who should understand under it only the latter, would not be able to explain the greater part of the passages in the ancients where it is mentioned. It is probable that ore containing zinc acquired this name, because it first produced brass[84 - Plin. lib. xxxiv. sect. 22.]. When it was afterwards remarked that calamine gave to copper a yellow colour, the same name was conferred on it also. It appears, however, that it was seldom found by the ancients[85 - Zinc-ore, besides being mentioned by Aristotle and Strabo, is mentioned by Galen, De Simplic. Medicam. Facultatibus, lib. ix. p. 142. As he found no furnace-calamine when he resided in Cyprus, he procured from the overseer of the mines some raw cadmia, which had been found in the mountains and rivulets, and which certainly must have been calamine.]; and we must consider cadmia in general as signifying ore that contained zinc. Gold-coloured copper or brass was long preferred to pure or common copper, and thought to be more beautiful the nearer it approached to the best aurichalcum. Brass therefore was supposed to be a more valuable kind of copper; and on this account Pliny says that cadmia was necessary for procuring copper, that is brass. Copper, as well as brass, was for a great length of time called æs, and it was not till a late period that mineralogists, in order to distinguish them, gave the name of cuprum to the former[86 - At first it was called æs cyprium, but in the course of time only cyprium; from which was at length formed cuprum. It cannot however be ascertained at what periods these appellations were common. The epithet cupreus occurs in manuscripts of Pliny and Palladius; but one cannot say whether later transcribers may not have changed cyprius into cupreus, with which they were perhaps better acquainted. The oldest writer who uses the word cuprum is Spartian; who says, in the Life of Caracalla, “cancelli ex ære vel cupro.” But may not the last word have been added to the text as a gloss? Pliny, book xxxvi. 26, says, “Addito cyprio et nitro;” which Isidore, xvi. 15, p. 393, expresses by the words adjecto cupro et nitro. The superiority of the Cyprian copper gave occasion to this appellation; as the best iron or steel was called chalybs, from the Chalybes (a people of Galatia) who prepared the finest, and carried on the greatest trade with it. But in what did the superiority of this Cyprian copper consist? In its purity, or in its colour, which approached near to that of gold? That island produced a great deal of ore which contained zinc, and abounded also with calamine. Pliny says, “in Cypro prima fuit æris inventio.” Red copper however had been known there from the earliest periods, so that the honour of its invention must be allowed to that island without any contradiction; and Pliny must undoubtedly allude in the above passage to some particular kind.]. Pliny says that it was good when a large quantity of cadmia had been added to it, because it not only rendered the colour more beautiful, but increased the weight. In the like manner a quintal of copper in Hungary produces a hundred and fifty pounds of brass. The same author remarks also that the cadmia (fossilis) was not used in medicine: this however is to be understood only of the raw ore, for some physicians prepared oxide of zinc from ore that contained zinc, as he afterwards tells us; and Galen extols the calamine found in Cyprus on account of its superior effects, because, perhaps, the oxide could be obtained from it much purer.

In the second place, cadmia, among the ancients, was what we call (ofenbruch) furnace-calamine, or what in melting ore that contains zinc, or in making brass, falls to the bottom of the furnace, and which consists of more or less calcined zinc. As this furnace-calamine assumes various appearances, according to the manner of melting, and according to many other circumstances that in part cannot be defined, and as the ancients comprehend all its varieties under the general name of cadmia, and give to each variety, according to its form, consistence and colour, a particular name also, a confusion of names has hence arisen which cannot now be cleared up, especially as it is not thought worth while to distinguish all its incidental variations. Our physicians esteem only the pure oxide of zinc; and as they know how to obtain it, they are not under the necessity of using impure furnace-calamine. In our melting-houses it is employed, without much nicety in the choice, for making zinc or brass[87 - Dioscorides, book v. c. 84, first mentions some sorts of cadmia, βοτρυίτις, πλακωτὴ and ὀστρακῖτις. These, according to Galen and Pliny, are undoubtedly certain kinds of (ofenbruch) furnace-calamine; but Salmasius in his book De Homonymis, p. 230, and Sarracen in his Annotations, p. 113, are of opinion that Dioscorides considered them as native kinds of cadmia, or minerals abundant in zinc. I cannot however allow myself to believe that Dioscorides, who was so careful, and who immediately after describes the artificial preparation of cadmia clearly and properly, should have thus erred. Besides, every kind of ofenbruch (furnace-calamine) must have discovered its origin from fire to such a good judge of minerals as Dioscorides. I am convinced that he, as well as Galen and Pliny, considered the above kinds as furnace-calamine.Pompholyx was the name of the white flowers of zinc which Dioscorides, v. 85, p. 352, compares to wool, and which by chemists were formerly called lana philosophica. The ancients collected these flowers when produced by the melting of zinc-ore; but they obtained them also by an apparatus which is fully described by Dioscorides and Galen, and which approaches near to that used for collecting arsenic in the poison melting-houses, as they are usually called.].

What here appears to me most singular is, that the ancients should have given the same names to furnace-calamine as they gave to ores that contained zinc. The affinity of these substances they could conjecture only from their effects, or perhaps they were induced to do so from observing that furnace-calamine was not produced but when the different kinds of cadmia, as they were called, were melted; that is, when yellow and not red copper was obtained. Ofenbruch got the name of furnace-calamine at Rammelsberg, when it was observed that it could be employed instead of native calamine for making brass[88 - This however I will not with certainty affirm. As calmey and galmey have probably taken their rise from cadmia or calimia, and as both these words signified proper calamine, as well as ofenbruch, the latter, perhaps, may at an earlier period have signified furnace-calamine.]. Were the ancients then in any measure acquainted with this use of it? Galen and Dioscorides speak only of its use in medicine, and say nothing of its being employed in the preparation of brass. The Arabian writers, particularly the translators of the Greek physicians, speak in a much clearer manner of the preparation of brass; but the appellations which they employ are so indeterminate in their signification, that an answer to the above question cannot be deduced from them. Climia, which some pronounce calimia and from which the modern Greeks made kelimia, and the Latins lapis calaminaris, seems to have entirely the same meaning as cadmia. Tutia, which occurs first in the eleventh century, in Avicenna, and which the Greeks write toutia, or perhaps more properly thouthia, signifies sometimes pompholyx; but in common it seems to express also minerals that contain zinc, and likewise furnace-calamine[89 - Proofs respecting this subject may be found in Salmasius De Homonymis.]. Could it be proved that the tutia of the Arabs and later Greeks was furnace-calamine, or the tutia of our druggists, the oldest account with which I am acquainted of furnace-calamine, employed in making brass, would occur in Zosimus, who, according to every appearance, lived in the fifth century[90 - It is not certainly known when this Zosimus Panopolitanus lived. His works, which must contain abundance of information respecting the history of chemistry, have never yet been printed. The greater part of them were preserved in the king’s library at Paris. The receipt to which I allude has been inserted by Salmasius, p. 237.]. This author tells us, that in order to make brass, Cyprus copper must be melted, and pounded tutia must be strewed over it. Salmasius suspects that Zosimus here means only calamine: but however this may be, his receipt has been retained till the present time in books on the arts; for these recommend not calamine, but tutia[91 - We read in Observations sur la Physique, vi. p. 255, that for many years tutia has been collected and sold in the bishopric of Liege. Lehmann endeavours to show that it was made by the Jews in Poland. Novi Comment. Acad. Petrop. xii. p. 381. As the use of tutia [which is an impure oxide of zinc found in the chimneys of the furnaces in which zinc-ores are roasted, or in which zinciferous lead-ores are smelted] has been almost abandoned, because physicians prefer pure flowers of zinc, and because those who make pinchbeck employ purified zinc, it is probable that this substance will soon be entirely neglected.].

We can with more certainty affirm that this use of furnace-calamine, in making brass, was known to Albertus Magnus in the thirteenth century; for he says, first, that yellow copper was made by the addition of calamine, which he calls lapis calaminaris. He tells us afterwards, that Hermes taught how to give a gold colour to copper by throwing pounded tutia into the melted metal. Tutia, says he, which is used in the transmutation of metals, is not a native mineral, but an artificial mixture, produced in the furnace when copper-ore is melted; and he advises glass-gall to be strewed over the ore, otherwise calamine and tutia will lose their force in the fire[92 - De Mineralibus. Coloniæ, 1569, 12mo, p. 350, lib. iv. cap. 5; and lib. v. cap. 7, p. 388.]. It would appear that the last-mentioned name, in the thirteenth century, signified only furnace-calamine, and that its use for making brass was at that period known.

For many centuries, however, the ofenbruch (furnace-calamine), with which, as we are told, the furnaces at Rammelsberg overflowed, was thrown aside as useless, till at length, in the middle of the sixteenth century, Erasmus Ebener first showed that it might be used instead of native calamine for making brass. This Ebener, descended from the noble family of that name at Nuremberg, was a man of great learning, and an able statesman. He was employed by his native city, and by foreign princes, on occasions of the highest importance. In 1569 he was privy-counsellor to Julius duke of Brunswick, and died in 1577, at Helmstadt, where he was buried. I regret much that I can give no further account of this important discovery; the time even when it was made is not known with certainty. Lœhneyss says that it was sixty years before the period when he wrote. But at what period did he write? The oldest edition, with which I am acquainted, of his treatise on mines, is of the year 1617, so that this discovery would fall about the year 1557[93 - The other edition was printed at Stockholm and Hamburg, by Liebezeit, and is the same as that mentioned by H. Gatterer, in Anleitung den Harz zu bereisen, i. p. 313, and ii. p. 13.]. Calvör caused to be printed an old account of the Rammelsberg mines, which was said to have been published in 1565. According to that work, Ebener made the above-mentioned observation at Nuremberg, about seventeen years before, that is, about the year 1548. Schluter assigns as the period about 1550, and Honemann about 1559. We may therefore very safely place it in the middle of the sixteenth century, and probably the discovery happened in 1553, at which time Ebener was sent to duke Henry, with whom he continued a long time, as we are expressly told by Doppelmayer. This use of calamine refuse induced the managers of the profitable brass-works in the Harz forest to pick up carefully that which before had been thrown aside. Duke Julius, who endeavoured to improve every branch of manufacture, and particularly what related to metallurgy, and who, agreeably to the then prevailing mode of princes, suffered himself to be duped with the hopes of making gold, improved the brass-works at Buntheim, below Harzburg, and by these means brought a great revenue to the electoral treasury.

Another production of zinc, artificial white vitriol, was also long prepared, used and employed in commerce before it was known that it was procured from this metal. That it was not known before the middle of the sixteenth century, and that it was first made at Rammelsberg, may with confidence be affirmed. Schluter ascribes the invention of it to duke Julius, and places it in the year 1570: but it must be somewhat older than the above-quoted account of Rammelsberg; for the author, who wrote about 1565[94 - “White vitriol also is made at Goslar, but by one citizen only, named Henni Balder. It is not procured by the evaporation of copper like other vitriol; but when large quantities of ore are roasted in the furnaces, a red substance is from time to time collected on the refuse of the ore, and found in some places half an ell thick. This substance, which is saltish, is formed into a lye, and boiled in small leaden pans. The rest of the process I do not know, but I observed that it crystallizes like saltpetre, but is stronger and whiter. It is also cast into small cakes about the thickness of one’s hand. This vitriol is employed by the leather-dressers, and may be used for many things instead of alum; but it cannot be used in dressing white skins, because it makes them yellowish.”], relates, that in his time one citizen only, whom he calls Henni Balder, boiled white vitriol; and it appears that this person kept the process a secret. That the invention was not then new, is evident from his adding, that what its effects might be in medicine had not been examined; but that its use in making eye-water had been known almost as early as the time when it was discovered. This agrees with another account, according to which the method of boiling white vitriol was found out at the time when Christopher Sander, whose service to the Harz is well-known, was tithe-gatherer. Honemann says that Sander was tithe-gatherer at the mines of the Upper Harz before the year 1564, but that in this year he was principal tithe-gatherer and director of the mines and melting-houses at Goslar. Sander himself, in a paper dated August 3, 1575, seems to ascribe the invention of white vitriol to duke Julius[95 - Bruckmann, ii. p. 446. [Schwartze, in his Pharm. Tabell. 2nd edit. p. 779, states that white vitriol was known towards the end of the thirteenth or at the commencement of the fourteenth century.]].

At first this salt was called Erzalaun, a name occasioned by its likeness to alum, but afterwards it was more frequently known by those of Gallitzenstein, Golitzenstein, and Calitzenstein. The latter names however appear to be older than white vitriol itself; as we find that green vitriol, even before the year 1565, was called green Gallitzenstein. May not the word be derived from gallæ; because it is probable that vitriol and galls were for a long time the principal articles used for making ink and in dyeing? I am of opinion that the white vitriol, which is produced in the mines of Rammelsberg in the form of icicles, gave rise to the discovery and manufacture of this salt. The former, so early as the year 1565, was called white native vitriol, or white Gogkelgut, and was packed up in casks, and in that manner transported for sale[96 - Calvor, Historische Nachricht, p. 199 and 200. Properly it is written and pronounced jöckel. It is very remarkable that in Iceland this word at present signifies icicles.]. I shall not here enter into the old conjectures respecting the origin and component parts of this vitriol; but it deserves to be remarked, that Henkel and Neumann[97 - Chemie, von Kessel, iv. 2, p. 832, where may be found the old opinions on this subject.] observed in it a mixture of zinc, by which Brandt, a member of the Swedish council of mines, was led to prove, that, when pure, it consists of vitriolic acid and oxide of zinc; and this was afterwards confirmed by Hellot[98 - Brandt, in Acta Upsaliens. 1735. Hellot, in Mémoires de l’Acad. des Sciences, Paris, 1735, p. 29. [Sulphate of zinc or white vitriol is at present manufactured in considerable quantity for pharmaceutical purposes, and for the calico-printer.]].

I come now, in the last place, to the history of this metal, which, when furnace-calamine was used, could not remain long unobserved, as it is sometimes found amongst it uncalcined in metallic drops. It is worthy of remark, that Albertus Magnus, who first described the use of furnace-calamine in making brass, is the oldest author in whose works mention is made of zinc. He calls it marchasita aurea. This was properly a stone, the metallic particles of which were so entirely sublimated by fire, that nothing but useless ashes remained behind. It contained fixed quicksilver, communicated a colour to metals, on which account it was well known to the alchemists, burned in the fire, and was at length entirely consumed. It was found in various parts, but that at Goslar was the best, because the copper it contained seemed to have in it a mixture of gold. To give this copper however a still greater resemblance to gold, some tin was added to it, by which means it became more brittle. This marchasita also rendered copper white as silver. Thus far Albertus. It obtained without doubt the name of marchasita aurea, because zinc communicates a yellow colour to copper; and for the same reason the Greeks and the Arabians called cadmia golden or aurea. But how could Albertus say that marchasite made copper white? Did he commit a mistake, and mean tin? To me this appears not probable, as at one time he seems to call it argentea. I imagine that he knew that copper, when mixed with as much zinc as possible, that is, according to Scheffer, eighty-nine pounds to a hundred, became white; and it appears that by this he wished to establish its affinity with quicksilver.

The next author who gives an intelligible account of this metal is Theophrastus Paracelsus, who died in 1541. I do not however imagine that it was forgotten in this long interval, at least by those who were called alchemists. I am rather of opinion, that on account of the great hopes which it gave them by the colouring of copper, they described it purposely in an obscure manner, and concealed it under other names, so that it was not discovered in their works. There are few who would have patience to wade through these, and the few who could do so, turn their attention to objects of greater importance than those which occupy mine. Gold and silver excepted, there is no metal which has had formerly so many and so wonderful names as zinc[99 - A great many may be found collected in Fuchs, Geschichte des Zinks. Erfurt, 1778, 8vo.]. For this reason, chemists long believed that zinc was not a distinct metal, but only a variety of tin or bismuth; and with these perhaps it may hence have been often confounded.

The name zinc occurs first in Paracelsus. He expressly calls it a distinct metal, the nature of which was not sufficiently known; which could be cast, but was not malleable, and which was produced only in Carinthia. Was he then unacquainted with the zinc of Goslar, which was known at an earlier period to Albertus Magnus[100 - Paracelsi Opera. Strasb. 1616, fol. I shall here transcribe the principal passage. Of zinc: – There is another metal, zinc, which is in general unknown. It is a distinct metal of a different origin, though adulterated with many other metals. It can be melted, for it consists of three fluid principles, but it is not malleable. In its colour it is unlike all others, and does not grow in the same manner; but with its ultima materia I am as yet unacquainted, for it is almost as strange in its properties as argentum vivum. It admits of no mixture, will not bear the fabricationes of other metals, but keeps itself entirely to itself.]? George Agricola, who wrote about the year 1550, speaks however of the Goslar zinc, but he calls it liquor candidus, and in German conterfey[101 - De Re Metallica, lib. ix. p. 329.]. Mathesius, who published his sermons in 1562, says, “at Freyberg there is red and white zinc.” Perhaps he did not mean the metal, but minerals that contained zinc. George Fabricius, who died in 1571, conjectures that stibium is what the miners call cincum, which can be melted, but not hammered.

It is seen by these imperfect accounts that this metal must have been scarce, even in the middle of the sixteenth century, and that it was not in the collection of Agricola, which was considerable for that period. Libavius, who died in 1616, mentions it several times, but he regrets, in one of his letters, that he had not been able to procure any of it[102 - In J. Hornung’s Cista Medica. Lipsiæ.]. Was this owing to the prohibition of duke Julius, by which it was forbidden to be sold? This prohibition is quoted by Pott from Jungii Mineralogia, with which I am unacquainted; but as Pott has already, by his unintelligible quotations, made me spend many hours to no purpose, I shall not waste more in searching for it. The prohibition alluded to is mentioned neither by Rehtmeier nor by any other author. The foolish taste for alchemy, which prevailed then at the duke’s court, makes it not altogether improbable that one was issued[103 - How much duke Julius, who in other respects did great service to his country, suffered himself to be duped by the art of making gold, appears from an anecdote given by Rehtmeier, p. 1016. Of this anecdote I received from M. Ribbentrop an old account in manuscript, which one cannot read without astonishment. There is still shown, at the castle of Wolfenbuttle, an iron stool, on which the impostor, Anna Maria Zieglerinn, named Schluter Ilsche, was burnt, February 5, 1575.]; and if that was really the case, it was occasioned not so much by any dread of this metal being misused, as Pott thinks, but by the high hopes which were entertained of its utility in making gold. The first accurate and certain account of the method of procuring zinc at Goslar, is, as far as I know, given by Lœhneyss, in 1617, though he considers it to be the same as bismuth[104 - Page 83: – “When the people at the melting-houses are employed in melting, there is formed under the furnace, in the crevices of the wall, among the stones where it is not well plastered, a metal which is called zinc or conterfeht; and when the wall is scraped, the metal falls down into a trough placed to receive it. This metal has a great resemblance to tin, but it is harder and less malleable, and rings like a small bell. It could be made also, if people would give themselves the trouble; but it is not much valued, and the servants and workmen only collect it when they are promised drink-money. They however scrape off more of it at one time than at another; for sometimes they collect two pounds, but at others not above two ounces. This metal, by itself, is of no use, as, like bismuth, it is not malleable; but when mixed with tin, it renders it harder and more beautiful, like the English tin. This zinc or bismuth is in great request among the alchemists.”]. Joh. Schrœder of Westphalia, who died in 1664, calls it marcasita pallida.

The first person who purposely procured this metal from calamine, by the addition of some inflammable substance, was undoubtedly Henkel, who gave an account of his success in the year 1741, though he concealed the whole process[105 - Kieshistorie, p. 571, and particularly p. 721.]. After him, Dr. Isaac Lawson, a Scotsman, seems to have made experiments which proved the possibility of obtaining zinc in this manner on a large scale; and in 1737 Henkel heard that it was then manufactured in England with great advantage. Of this Lawson I know nothing more than what is related by Dr. Watson[106 - Pott refers to Lawson’s Dissert. de Nihilo, and quotes some words from it; but I cannot find it; nor am I surprised at this, as it was not known to Dr. Watson. – See Chemical Essays, iv. p. 34. Pryce, in Mineral. Cornub., p. 49, says, “The late Dr. J. Lawson, observing that the flowers of lapis calaminaris were the same as those of zinc, and that its effects on copper were also the same with that semi-metal, never remitted his endeavours till he found the method of separating pure zinc from that ore.” The same account is given in the supplement to Chambers’s Dictionary, 1753, art. calm. and zinc; and in Campbell’s Political Survey of Britain, ii. p. 35. The latter however adds, that Lawson died too early to derive any benefit from his discovery.]. Anthony von Swab, member of the Swedish council of mines, procured this metal afterwards from calamine by distillation, in 1742; as did Marggraf in 1746, who appears however not to have been acquainted with the Swedish experiment. In the year 1743, one Champion established zinc works at Bristol, which were continued by his successor James Emerson, who established works of the like kind at Henham, in the neighbourhood. The manner in which the metal was procured, has been described by Dr. Watson in his Chemical Essays.

The greater part of this metal, used in Europe, was undoubtedly brought from the East Indies. The Commercial Company in the Netherlands, between the years 1775 and 1779, caused to be sold, on their account, above 943,081 pounds of it[107 - Ricards Handbuch der Kaufleute, i. p. 57.]. In the year 1780, the chamber of Rotterdam alone sold 28,000 pounds; and I find, by printed catalogues, that the other chambers, at that period, had not any of it in their possession. If the account given by Raynal be true, the Dutch East India Company purchased annually, at Palimbang, a million and a half of pounds[108 - Raynal says that the company purchase it at the rate of twenty-eight florins three-quarters per hundred weight, and that this price is moderate. At Amsterdam, however, the price was commonly from seventeen to eighteen florins banco. According to a catalogue which I have in my possession, the price, on the 9th of May, 1788, was seventeen florins, and on the 22nd of January, 1781, it was only sixteen.]. In 1781, the Danish Company at Copenhagen purchased 153,953 pounds of tutenage, which had been carried thither in two vessels, at the rate of from four and one-eighth to four and a quarter schillings Lubec per pound. It is probable that the English and Swedes import this article also. It would be of some consequence if one could learn in what part of India, when, and in what manner this metal was first procured, and in what year it was first carried thence to Europe. According to the scanty information which we have on the subject, it comes from China, Bengal, Malacca[109 - Linschoten, b. ii. c. 17. The author calls it calaem, the name used in the country. It is a kind of tin.], and the Malabar coast, from which copper and tin are also imported. In the oldest bills of lading of ships belonging to the Netherlands I find no mention of zinc; but it is possible that it may be comprehended under the name of Indian tin; for so it was at first called. Savot, who died about the year 1640, relates, on the authority of a contemporary writer[110 - De Nummis Antiquis; in Grævii Thes. Antiq. Rom. xi. p. 1195.], that some years before the Dutch had taken from the Portuguese a ship laden with this metal, which was sold under the name of speautre. It is probable therefore that it was brought to Europe so early as the beginning of the seventeenth century. Indian tin is mentioned by Boyle.

It is probable that this metal was discovered in India before anything of the European zinc had been known in that country; but we are still less acquainted with the cause of the discovery than with the method of procuring the metal. We are told that an Englishman, who, in the above century, went to India, in order to discover the process used there, returned with an account that it was obtained by distillation ver descensum.

Respecting the origin of the different names of this metal, I can offer very little. Conterfey signified formerly every kind of metal made in imitation of gold[111 - Matthesius, Pred. v. p. 250. – “Conterfeil is a metal of little value, formed by additions and colouring substances, so that it resembles gold or silver, as an image, or anything counterfeited, does its archetype. Thus copper is coloured by calamine and other mixtures, in such a manner that it appears to be pure gold.” In the police ordinance issued at Strasburg in 1628, young women are forbidden to wear gold or silver, or any conterfaite, and everything that might have the appearance of gold or silver.]. Frisch says it was called zink, from which was formed first zinetum, and afterwards zincum, because the furnace-calamine assumes the figure of (zinken or zacken) nails or spikes; but it is to be remarked that these names do not occur before the discovery of this metal, though ofenbruch was known long before. Fulda speaks of the Anglo-Saxon sin, zink, which he translates obryzum. Spiauter, speauter, and spialter, from which Boyle made speltrum, and also tutaneg or tuttanego, came to us from India with the commodity. Under the last-mentioned name is sometimes comprehended a mixture of tin and bismuth. Calaem is also an Indian appellation given to this metal, and has a considerable likeness to calamine; but I am of opinion with Salmasius that the latter is not derived from the former, as lapis calaminaris occurs in the thirteenth century, and calaem was first brought to us by the Portuguese from India.

[Most of the zinc works in this country are situated in the neighbourhood of Birmingham and Bristol; a few furnaces also exist in the neighbourhood of Sheffield, among the coal-pits surrounding that town; there is also one at Maestag in Glamorganshire. The ores worked at Bristol and Birmingham are principally obtained from the Mendip-hills and Flintshire; those at Sheffield from Alston Moor. The greater part however of the zinc used in this country is imported in ingots and plates from Silesia, by way of Hamburg, Antwerp, Dantzic, &c. We receive annually from 100,000 to 170,000 cwts. from Germany; of this quantity, about 80,000 cwt. are entered for home consumption, and the rest is exported for India.

From its moderate price and the ease with which it can be worked, zinc is now extensively used for making water-cisterns, baths, pipes, covering of roofs, and a great many architectural purposes. It has also of late been employed in the curious art of transferring printing, known under the name of Zincography, but owing to the ease with which this metal becomes coated with a film of oxide or carbonate, by exposure to the air, the plates cannot be preserved for any great length of time.]

CARP

So obscure is the ichthyology of the ancients, or so little care has been taken to explain it, that the question whether our carp were known to Aristotle, Pliny, and their contemporaries, cannot with any great degree of probability be determined. Besides, that subject is attended with much greater difficulties than the natural history of quadrupeds. Among four-footed animals there is a greater variety in their bodily conformation, which at any rate strikes the eye more, and can be more easily described than that of fishes, which in general are so like in shape, that an experienced systematic naturalist finds it sometimes difficult to determine the characters of the genera and species. It is not surprising therefore that the simple descriptions of the ancients, or rather the short accounts which they give us of fish, do not afford information sufficient to enable us to distinguish with accuracy the different kinds. Quadrupeds may terrify us by their ferocity, or endeavour to avoid us by shyness and craft; but it is still possible to observe their sexes, their age, and their habits, and to remark many things that are common to one or only a few species. Fishes, on the other hand, live in an element in which we cannot approach them, and which for the most part conceals them from our observation. The chase, since the earliest periods, and in modern times more than formerly, has been the employment of idle persons, who bestow upon it greater attention the fewer those objects are which can attract their curiosity or employ their minds: but fishing has almost always been the laborious occupation of poor people, who have no time to make observations, as they are obliged to follow it in order to find a subsistence; and mankind in general seldom see fish except on their tables or in collections of natural history. On this account those properties of fish by which their species could be determined, were less known. The descriptions of four-footed animals which have been handed down to us from the time of the Greek and Roman writers, give us, at any rate, some information; but from those of fishes, which are more uncommon, we can scarcely derive any; unless one were as acute or easy of belief as many collectors of petrefactions, who imagine that they can distinguish each species of fish in the impressions which they see in stones. More however might be done towards elucidating the ichthyology of the ancients than has hitherto been attempted. It would be necessary only to make a beginning by collecting the species and names which can with certainty be determined, together with the authorities, and separating them from the rest; and an abstract should be formed of what is said in the ancients respecting the unknown species, or whatever may in any measure serve to make us acquainted with them; but mere conjectures ought never to be given as proofs, nor ought the opinions of commentators, or the explanations of dictionaries to be adopted without sufficient grounds. If these are to be believed without further examination, the names cyprini and lepidoti must be considered as those of carp; and the proposed question would be soon answered: but that opinion has scarcely probability in its favour when one searches after proofs.

I shall not here lay before the reader everything completely that the ancients have said respecting the cyprini, and which is in part so corrupted by transcribers, that no certain meaning can be drawn from it. Were I to treat of the ichthyology of the ancients, it might be necessary; but as that is not the case, I shall only quote such parts of it as have been employed by Rondelet and others to prove that they were our carp. Their principal grounds seem to be, that among all the fish of the ancients no others occur which can with any probability be considered as carp. If the cyprini therefore were not carp, these must not have been named by the ancients; and that undoubtedly will not readily be admitted. It is well known what a high value the ancients, particularly the Orientals, set upon fish, of which they had a great variety; and it appears that they preferred them to all dishes prepared from four-footed animals or fowls. Fish seem to have been the choicest delicacies of voluptuaries, and in that respect they are oftener mentioned by historians than fowls. Physicians also, to whom the most sumptuous tables have in all ages been of the greatest benefit, speak of fish oftener in their writings than of dishes made of the flesh of other animals. In the ancient cookery, the number of dishes prepared from fish is indeed great in comparison of those dressed from fowls. Turdi and attagines are much praised; but had pheasants, snipes, partridges, and others, been as much esteemed then as they are now, these would not have been forgotten, or would have occurred oftener. Fish at present form the principal food in Greece, as well as at Constantinople, and a great abundance and variety of them may be found there in the markets; but fowls which have been caught or shot are seldom exposed for sale. When the Egyptian and Greek monks wished to distinguish themselves by abstinence and temperance, they denied themselves all kinds of fish, as the richest delicacies, in the same manner as pretended devotees among the Europeans deny themselves flesh. But though all this may be true, it does not prove that our carp must occur in the writings of the ancients. The Roman voluptuaries, indeed, left very little untried that was likely to gratify their appetite; but it was impossible for them to make a trial of everything. There may have been particular reasons which prevented them from meeting with carp; and who will venture to affirm that all the knowledge of the ancients must be contained in those few of their writings which have been preserved to us by accidents?

If one, freed from these prejudices, should now ask why the cyprinus must be our carp, the answer will be, because what we read of the tongue and scales of the cyprini cannot be applied with so much propriety to any species of fish as to the Cyprinus carpio of Linnæus. Aristotle informs us that the cyprini had properly no tongue, but that their soft fleshy palate might very readily be taken for one[112 - Histor. Animal. lib. iv. cap. 8.]. Athenæus affirms that they had a tongue, but that it lay in the upper part of the mouth or palate; and in confirmation of this he refers to Aristotle[113 - Lib. vii. p. 309.]. This assertion of Athenæus however is very dubious; for these words are not to be found in the works of Aristotle which have been preserved, though the same meaning might be indeed forced, in case of necessity, from the passage first quoted. It is possible that Athenæus, as Casaubon[114 - Animadvers. vii. 17, p. 540.] has already conjectured, may here, as well as in other parts, allude to some book of Aristotle not now extant. Besides, he calls the fish of which he speaks, not cyprinus, but cyprianus; and a question therefore arises, whether he may not have meant some other kind. This much at any rate appears certain from the passage of Aristotle, that the cyprinus had a thick fleshy palate; and that indeed is the case with our carp, so that the head, on account of the delicacy and agreeable taste of the palate, is reckoned the most relishing part. By that circumstance however nothing is proved; as it is not peculiar to carp alone, but common to every species of the same family, such as the bream, tench, &c. Fish of this kind, says Bloch, have properly no tongue; that which appears to be one is merely a cartilaginous substance which projects through those band-like parts that enclose it on each side. This proof would have more weight, did we find it related, that in the time of Aristotle, the tongue was considered as an exquisite morsel: but that is not mentioned; and H. Krunitz is mistaken, when he says that Heliogabalus, to satisfy his luxurious appetite, was induced to try a fricassee of the tongues of carp: it consisted only of the tongues of peacocks and nightingales[115 - Lampridii Vita Heliogab. c. 20.]. Had the ancients really used carp on their tables, we must have ascribed to them the discovery of these delicious fish.

The other proof which is brought from the scales consists in what is said by Dorion, in Athenæus[116 - Lib. vii. p. 309.], that the cyprianus was called also by some lepidotus, or scaly. As nearly all fish have scales, the scales of this species must have been extremely large, as they got that name by way of eminence; and it must be indeed allowed, that the above epithet would suit our carp exceedingly well, as their scales are very large. But this circumstance alone proves nothing, as the Mullus and Mugil have still larger scales; and to the first genus belonged one of the fish most esteemed by the ancients[117 - This fish was a first-rate article of luxury among the Romans, and was purchased at a dear rate. Juvenal says, “Mullum sex millibus emit, æquantem sane paribus sestertia libris.” See Plin. lib. ix. c. 17. The Italians have a proverb, “La triglia non mangia chi la piglia,” which implies, that he who catches a mullet is a fool if he eats it and does not sell it. When this fish is dying, it changes its colours in a very singular manner till it is entirely lifeless. This spectacle was so gratifying to the Romans, that they used to show the fish dying in a glass vessel to their guests before dinner.]. Strabo mentions the lepidotus among the sacred fish of the Nile; but whether it be the same as that of which Dorion speaks, cannot be determined. It is certain that the Nile contains carp still; for Norden saw them caught at the waterfall near Essuane, which is the ancient Syene. Did we know that the modern Greeks at present call carp cyprini, this would prove more; for it is an undoubted fact that the ancient names have for the most part been retained in Greece. We are assured by Massarius[118 - Fr. Massarii in ix. Plinii. libr. Castigat. Bas. 1537, 4to.], that the Greeks still use the name cyprinus; but Gyllius says that it is employed only by a few: and this is confirmed by Bellon, who mentions all the names of carp which he heard in Greece, and which are entirely different from the ancient[119 - A great service would be rendered to the natural history of the ancients, if some able systematic naturalist would collect all the Greek names used at present. Tournefort and others made a beginning.]; but he adds, that carp in Ætolia are still called cyprini. Both the before-mentioned circumstances respecting the cyprini agree extremely well with our carp; but as they will suit other kinds equally well, they afford no complete proof, but only a probability which amounts to this, that among the large-scaled fish, carp in particular have a fleshy palate; and it is readily admitted that the ancients were acquainted with all kinds, and chose names for them with more foundation than is done at present.

In opposition to this probability it may be said that Oppian and Pliny reckon the cyprini among the sea-fish, to which kind our carp do not belong. This reply however, which some have indeed made, is not of great weight. In the first place, both these writers seem to have been in an error; for what Pliny says of the cyprini is evidently taken from Aristotle, and the latter does not tell us that these fish live in the sea, but rather the contrary. The Roman author, as Dalechamp remarks, added the words in mari, if they were not added by some transcriber. Oppian as a poet does not always adhere strictly to truth; and he makes more of the freshwater fish of Aristotle to be inhabitants of the sea. In the second place, I consider the distinction made between sea-fish, freshwater fish and those kept in ponds, to be not always very certain or well founded. Who knows whether the greater part of the last may not have been originally sea-fish? This is the more probable in regard to carp, as Professor Foster says that carp are sometimes caught in the harbour at Dantzic[120 - Philosophical Transact. vol. lxi. 1771, part i. 310.].
<< 1 2 3 4 5 6 ... 81 >>
На страницу:
2 из 81

Другие электронные книги автора Johann Beckmann