Оценить:
 Рейтинг: 0

A History of Inventions, Discoveries, and Origins, Volume I (of 2)

Год написания книги
2017
<< 1 2 3 4 5 6 7 ... 88 >>
На страницу:
3 из 88
Настройки чтения
Размер шрифта
Высота строк
Поля
During the time of the Tulipomania, a speculator often offered and paid large sums for a root which he never received, and never wished to receive. Another sold roots which he never possessed or delivered. Oft did a nobleman purchase of a chimney-sweep tulips to the amount of 2000 florins, and sell them at the same time to a farmer; and neither the nobleman, chimney-sweep or farmer had roots in their possession, or wished to possess them. Before the tulip season was over, more roots were sold and purchased, bespoke and promised to be delivered, than in all probability were to be found in the gardens of Holland; and when Semper Augustus was not to be had, which happened twice, no species perhaps was oftener purchased and sold. In the space of three years, as Munting tells us, more than ten millions were expended in this trade in only one town of Holland.

To understand this gambling traffic, it may be necessary to make the following supposition. A nobleman bespoke of a merchant a tulip-root, to be delivered in six months, at the price of 1000 florins. During these six months the price of that species of tulip must have risen or fallen, or remained as it was. We shall suppose that at the expiration of that time the price was 1500 florins; in that case the nobleman did not wish to have the tulip, and the merchant paid him 500 florins, which the latter lost and the former won. If the price was fallen when the six months were expired, so that a root could be purchased for 800 florins, the nobleman then paid to the merchant 200 florins, which he received as so much gain; but if the price continued the same, that is 1000 florins, neither party gained or lost. In all these circumstances, however, no one ever thought of delivering the roots or of receiving them. Henry Munting, in 1636, sold to a merchant at Alkmaar, a tulip-root for 7000 florins, to be delivered in six months; but as the price during that time had fallen, the merchant paid, according to agreement, only ten per cent. “So that my father,” says the son, “received 700 florins for nothing; but he would much rather have delivered the root itself for 7000.” The term of these contracts was often much shorter, and on that account the trade became brisker. In proportion as more gained by this traffic, more engaged in it; and those who had money to pay to one, had soon money to receive of another; as at faro, one loses upon one card, and at the same time wins on another. The tulip-dealers often discounted sums also, and transferred their debts to one another; so that large sums were paid without cash, without bills, and without goods, as by the Virements at Lyons. The whole of this trade was a game at hazard, as the Mississippi trade was afterwards, and as stock-jobbing is at present. The only difference between the tulip-trade and stock-jobbing is, that at the end of the contract the price in the latter is determined by the Stock-exchange; whereas in the former it was determined by that at which most bargains were made. High- and low-priced kinds of tulips were procured, in order that both the rich and the poor might gamble with them; and the roots were weighed by perits, that an imagined whole might be divided, and that people might not only have whole, but half and quarter lots. Whoever is surprised that such a traffic should become general, needs only to reflect upon what is done where lotteries are established, by which trades are often neglected, and even abandoned, because a speedier mode of getting fortunes is pointed out to the lower classes. In short, the tulip-trade may very well serve to explain stock-jobbing, of which so much is written in gazettes, and of which so many talk in company without understanding it; and I hope, on that account, I shall be forgiven for employing so much time in illustrating what I should otherwise have considered as below my notice[52 - [How well the author’s remarks apply to the recent mania in railway scrip!]].

At length, however, this trade fell all of a sudden. Among such a number of contracts many were broken; many had engaged to pay more than they were able; the whole stock of the adventurers was consumed by the extravagance of the winners; new adventurers no more engaged in it; and many, becoming sensible of the odious traffic in which they had been concerned, returned to their former occupations. By these means, as the value of tulips still fell, and never rose, the sellers wished to deliver the roots in natura to the purchasers at the prices agreed on; but as the latter had no desire for tulips at even such a low rate, they refused to take them or to pay for them. To end this dispute, the tulip-dealers of Alkmaar sent in the year 1637 deputies to Amsterdam; and a resolution was passed on the 24th of February, that all contracts made prior to the last of November 1636 should be null and void; and that, in those made after that date, purchasers should be free on paying ten per cent. to the vender.

The more people became disgusted with this trade, the more did complaints increase to the magistrates of the different towns; but as the courts there would take no cognizance of it, the complainants applied to the states of Holland and West Friesland. These referred the business to the determination of the provincial council at the Hague, which on the 27th of April 1637 declared that it would not deliver its opinion on this traffic until it had received more information on the subject; that in the mean time every vender should offer his tulips to the purchaser; and, in case he refused to receive them, the vender should either keep them, or sell them to another, and have recourse on the purchaser for any loss he might sustain. It was ordered also, that all contracts should remain in force till further inquiry was made. But as no one could foresee what judgement would be given respecting the validity of each contract, the buyers were more obstinate in refusing payment than before; and venders, thinking it much safer to accommodate matters amicably, were at length satisfied with a small profit instead of exorbitant gain; and thus ended this extraordinary traffic, or rather gambling.

It is however certain, that persons fond of flowers, particularly in Holland, have paid, and still pay, very high prices for tulips, as the catalogues of florists show[53 - In the year 1769, the dearest kinds in England were Don Quevedo and Valentinier; the former cost 2l. 2s. and the latter 2l. 12s. 6d. See Weston’s Botanicus Universalis, part 2. In the German catalogues none of the prices are so high. The name Semper Augustus is not once to be found in new catalogues. [They still remain flowers of considerable value among florists; for, according to Mr. Hogg, a moderate collection of choice bulbs cannot now be purchased for a sum much less than 1000l., at the usual prices. – See Chambers’ Journal, March 15, 1845.]]. This may be called the lesser Tulipomania, which has given occasion to many laughable circumstances. When John Balthasar Schuppe was in Holland, a merchant gave a herring to a sailor who had brought him some goods. The sailor, seeing some valuable tulip-roots lying about, which he considered as of little consequence, thinking them to be onions, took some of them unperceived, and ate them with his herring. Through this mistake the sailor’s breakfast cost the merchant a much greater sum than if he had treated the prince of Orange. No less laughable is the anecdote of an Englishman who travelled with Matthews. Being in a Dutchman’s garden, he pulled a couple of tulips, on which he wished to make some botanical observations, and put them in his pocket; but he was apprehended as a thief, and obliged to pay a considerable sum before he could obtain his liberty[54 - Blainville’s Travels.].

Reimman and others accuse Just. Lipsius of the Tulipomania[55 - Introd. in Hist. Lit. iii. 3, p. 92.]; but if by this word we understand that gambling traffic which I have described, the accusation is unfounded. Lipsius was fond of scarce and beautiful flowers, which he endeavoured to procure by the assistance of his friends, and which he cultivated himself with great care in his garden; but this taste can by no means be called a mania[56 - That he might relax and refresh his mind, worn out by study, he amused himself with the cultivation of his garden and of flowers, and particularly of tulips, the roots of which he was at great pains to procure from all parts of the world, by means of Dodonæus, Clusius, and Boisotus, men singularly well-skilled in horticulture, and by others of his friends. Here, at a distance from civil tumult, with a cheerful countenance and placid eye, he sauntered through his plants and flowers, contemplating sometimes one declining, sometimes another springing up, and forgetting all his cares amidst the pleasure which these objects afforded him. See the Life of Lipsius, prefixed to the edition of his works printed at Antwerp in 1637. This is confirmed by what Lipsius says himself in his book De Constantia, ii. 2, 3, in praise of gardening.]. Other learned men of the same age were fond of flowers, such as John Barclay[57 - He rented a house near to the Vatican, with a garden, in which he had planted the choicest flowers, and those chiefly which are not propagated from seeds or roots, but from bulbs. These flowers were not known about thirty years before, nor had they been ever seen at Rome, but lay neglected in the Alps. – Of these flowers, which have no smell, but are esteemed only on account of their colours, Barclay was remarkably fond, and purchased their bulbs at a great price. Erythræi Pinacotheca. Lips. 1712, 8vo, iii. 17, p. 623. See also Freheri Theatrum, p. 1515.], Pompeius de Angelis, and others, who would probably have been so, even though the cultivation of flowers had not been the prevailing taste. It however cannot be denied, that learned men may be infected with epidemical follies. In the present age, many have become physiognomists because physiognomy is in fashion; and even animal magnetism has met with partisans to support it.

CANARY BIRD

This little bird, highly esteemed for its song, which is reared with so much care, particularly by the fair sex, and which affords an innocent amusement to those who are fond of the wild notes of nature, is a native of those islands from which it takes its name. As it was not known in Europe till the fifteenth century, no account of it is to be met with in any of the works of the old ornithologists. Bellon, who about the year 1555 described all the birds then known, does not so much as mention it. At that period it was brought from the Canary Islands. It was therefore so dear that it could be procured only by people of fortune, and those who purchased were even often imposed on[58 - Gesneri Historiæ Animalium, liber tertius. Tiguri, 1555, fol. p. 234.]. It was called the sugar-bird, because it was said to be fond of the sugar-cane, and that it could eat sugar in great abundance. This circumstance seems to be very singular; for that substance is to many birds a poison. Experiments have shown, that a pigeon to which four drachms of sugar were given died in four hours, and that a duck which had swallowed five drachms did not live seven hours after. It is certain, therefore, that the power of poison is relative.

The first figure of this bird is given by Aldrovandus, but it is small and inaccurate. That naturalist reckons the Canary bird among the number of those which were scarce and expensive, as it was brought from a distant country with great care and attention. The first good figure of it is to be found in Olina[59 - Uccelliera, overo Discorso della natura di diversi Uccelli. Roma, 1622, 4to.]: it has been copied by both Johnston and Willughby.

In the middle of the seventeenth century these birds began to be bred in Europe, and to this the following circumstance, related by Olina, seems to have given occasion. A vessel, which, among other commodities, was carrying a number of Canary birds to Leghorn, was wrecked on the coast of Italy; and these birds, being thus set at liberty, flew to the nearest land, which was the Island of Elba, where they found the climate so favourable, that they multiplied, and perhaps would have become domesticated, had they not been caught in snares; for it appears that the breed of them there has been long since destroyed. Olina says that the breed soon degenerated; but it is probable that these Canary birds, which were perhaps all males, did at the Island of Elba what the European sailors do in India. By coupling with the birds of the island, they may have produced mules. Such hybrids are described by Gesner and other naturalists[60 - Gesneri redivivi, aucti et emendati, tomus ii. Franc. 1669, fol. p. 62. More information respecting hybrids may be found in Brisson, Ornithologie, t. iii. p. 187; and Frisch, Vorstellung der Vögel in Teutschland, the twelfth plate of which contains several good figures.].

The breeding of these birds was at first attended with great difficulty; partly because the treatment and attention they required were not known, and partly because males chiefly, and few females, were brought to Europe. We are told that the Spaniards once forbade the exportation of males, that they might secure to themselves the trade carried on in these birds, and that they ordered the bird-catchers either to strangle the females or to set them at liberty[61 - Coleri Œconomia ruralis et domestica. Franc. 1680, folio.]. But this order seems to have been unnecessary; for, as the females commonly do not sing, or are much inferior in the strength of their notes to the males, the latter only were sought after as objects of trade. In the like manner, as the male parrots are much superior in colour to the females, the males are more esteemed, and more of them are brought to Europe than of the females. It is probable, therefore, that in our system of ornithology, many female parrots belonging to species already well-known are considered as distinct species. It was at first believed that those Canary birds bred in the Canary Islands were much better singers than those reared in Europe; but this at present is doubted[62 - Barrington’s paper in the Phil. Trans. vol. lxiii. p. 249.]. In latter times various treatises have been published in different languages, on the manner of breeding these birds, and many people have made it a trade, by which they have acquired considerable gain. It does no discredit to the industry of the Tyrolese that they have carried it to the greatest extent. At Ymst there is a company who, after the breeding season is over, send out persons to different parts of Germany and Switzerland to purchase birds from those who breed them. Each person brings with him commonly from three to four hundred, which are afterwards carried for sale, not only through every part of Germany, but also to England, Russia, and even Constantinople. About sixteen hundred are brought every year to England; where the dealers in them, notwithstanding the considerable expense they are at, and after carrying them about on their backs, perhaps a hundred miles, sell them for five shillings apiece. This trade, hitherto neglected, is now carried on in Schwarzwalde; and at present there is a citizen here at Göttingen, who takes with him every year to England several Canary birds and bullfinches (Loxia pyrrhula), with the produce of which he purchases such small wares as he has occasion for.

The principal food of these birds is the Canary seed, which, as is commonly affirmed, and not improbably, was first brought, for this purpose, from the Canary Islands to Spain, and thence dispersed all over Europe. Most of the old botanists, however, are of opinion that the plant which produces it is the same as that called Phalaris by Dioscorides[63 - Phalaris Canariensis. The best figure and description of it are to be found in Schreber’s Beschreibung der Gräser, ii. p. 83, tab. x. 2.]. Should this be true, it will follow that this kind of grass must have grown wild in other places besides the island it takes its name from; which is not improbable. But those who read the different descriptions which the ancients have given of Phalaris, will, in my opinion, observe that they may be equally applied to more plants; and Pliny seems to have used this name for more than one species of grass[64 - Lib. iii. c. 159, and lib. xxvii. c. 12.].

However this may be, it is certain that this seed, when it was used as food for these birds, began to be cultivated first in Spain, and afterwards in the southern parts of France. At present it is cultivated in various parts, and forms no inconsiderable branch of trade, particularly in the island of Sicily, where the plant is called Scagliuola, or Scaghiola. The seed is sold principally to the French and the Genoese. In England, the industrious inhabitants of the Isle of Thanet, particularly those around Margate and Sandwich, gain considerably by this article, as they can easily transport it to London by water.

That this plant might be cultivated with little trouble in Germany, is shown by the yearly experience of those who raise it in their gardens, and by its having become so naturalized in some parts of Hesse, that it propagates by seed of itself in the fields. The use of the seed might also be extended, for it yields a good meal; but the grains are not easily freed from the husks.

I shall here take occasion to remark, that Savary[65 - Dictionnaire de Commerce, t. v. 1765, fol. p. 1149.] has been guilty of an error, when he says that archil is cultivated in the Canary Islands in order to be sold as food for Canary birds. One may easily perceive that this mistake has arisen from his confounding that lichen used for dyeing with this kind of grass; and I should not have considered it worth notice, had it not been copied into Ludovici’s Dictionary of Trade, from which, perhaps, it may be copied into the works of others.

ARCHIL

Under the names Orseille, Orceille, Orsolle, Ursolle, Orcheil, Orchel, in Italian Oricello[66 - In the Dictionary of the Academy della Crusca the word oricello is thus explained: Tintura colla quale si tingono i panni, che si fa con orina d’uomo, e con altri ingredienti.], Orcella, Roccella, in Dutch Orchillie, and in English Archil, Canary weed or Orchilla weed, is understood a lichen used for dyeing, and from which a kind of paint is also prepared. This species of lichen, of which the best figure and a full description may be seen in Dillenius[67 - Historia Muscorum, Ox. 1741, 4to, p. 120.], is by Linnæus called Lichen roccella. It is found in abundance in some of the islands near the African coast, particularly in the Canaries, and in several of the islands in the Archipelago. It grows upright, partly in single partly in double stems, which are about two inches in height. When it is old these stems are crowned with a button, sometimes round and sometimes of a flat form, which Tournefort very properly compares to the excrescences on the arms of the Sepia. Its colour is sometimes a light, and sometimes a dark gray. Of this lichen with lime, urine, ammoniacal salts, or a solution of ammonia prepared by distillation, is formed a dark red paste, which in commerce has the same name, and which is much used in dyeing. That well-known substance called litmus is also made of it.

Theophrastus[68 - Hist. Plant. iv. c. 7.], Dioscorides[69 - Lib. iv. c. 95.], and their transcriber Pliny[70 - Lib. xxvi. c. 10; xxxii. c. 6.], give the name of Phycos thalassion or pontion to a plant which, notwithstanding its name, is not a sea-weed but a lichen, as it grew on the rocks of different islands, and particularly on those of Crete or Candia. It had in their time been long used for dyeing wool, and the colour it gave when fresh was so beautiful, that it excelled the ancient purple, which was not red, as many suppose, but violet. Pliny tells us, that with this lichen dyers gave the ground or first tint to those cloths which they intended to dye with the costly purple. At least I so understand, with Hardouin and others, the words conchyliis substernitur, which the French dyers express by the phrase donner le pied.

Though several kinds of lichen produce a similar red dye, I agree in opinion with Dillenius, that Phycos thalassion is our archil; for at present no species is known which communicates so excellent a colour, and which corresponds so nearly with the description of Theophrastus. Besides, it is still collected in the Grecian islands, and it appears that it has been used there since the earliest ages[71 - Hardouin quotes Aristot. Hist. Animal. vi. c. 9. But that naturalist speaks of a sea-weed which was cast on shore by the Hellespont. A dye or paint was made of it, and the people in the neighbourhood imagined that the purple of this sea-weed, which served as food to certain shell-fish, communicated to them their beautiful dye. A proof that sea-weeds (fuci) can communicate a red colour may be found in the Transactions of the Swedish Academy, iv. p. 29.].

Tournefort[72 - Voyage du Levant. Amsterd. 1718, 4to, i. p. 89.] found this lichen in the island Amorgos, which lies on the eastern side of Naxos, and which at present is called Morgo. In his time it was sent to England and Alexandria, at the rate of ten rix-dollars per hundred weight; and he says expressly that it was common in the other islands. He shows from Suidas, Julius Pollux[73 - “Præterea Amorgina, optima quidem in Amorgo fiunt, sed et hæc e lino esse asserunt. Tunica autem Amorgina etiam amorgis nuncupatur.” – Onomasticon, vii. c. 16.], and other ancient writers, that this island was once celebrated for a kind of red linen cloth, which in commerce had the name of the island; and he conjectures, not without probability, that it might have been dyed with this lichen.

Imperati[74 - Histor. Nat. lib. xxvii. c. 11.] says, that the roccella, of which he gives a figure, was procured from the Levant. This naturalist gives the figure also of a lichen from Candia, used for dyeing, which was then called rubicula, and which, as may be seen in Bauhinus[75 - Pinax Plant. p. 365. Hist. Plant. iii. 2. p. 796.], is comprehended under the name of Roccella. Dillenius and Linnæus, however, make it a distinct species; and the latter names it Lichen fuciformis. This distinction is, perhaps, not improper: for the rubicula does not grow like a shrub or bush, as the roccella, but belongs rather to the foliaceous lichens. Be this as it may, it is certain, as Dillenius has remarked, and as I know from my own observation, that L. fuciformis is often mixed with the real roccella, and particularly with that brought from the Canary Islands; but whether it be equally good, experience has not yet taught us.

From what has been said, I think I may venture to conclude that our archil was not unknown to the ancient Grecians. But when was it first employed as a dye by the moderns, and introduced into our commerce? Some writers are of opinion that this drug was first found in the Canary Islands, and afterwards in the Levant. The use of it, therefore, is not older than the last discovery of that island. That this opinion is false, will appear from what follows.

Among the oldest and principal Florentine families is that known under the name of the Oricellarii or Rucellarii, Ruscellai or Rucellai, several of whom have distinguished themselves as statesmen and men of letters. This family are descended from a German nobleman named Ferro or Frederigo, who lived in the beginning of the twelfth century[76 - Other accounts say that he was an Englishman; but the name Frederigo confirms his German extraction.]. One of his descendants in the year 1300 carried on a great trade in the Levant, by which he acquired considerable riches, and returning at length to Florence with his fortune, first made known in Europe the art of dyeing with archil. It is said that a little before his return from the Levant, happening to make water on a rock covered with this lichen, he observed that the plant, which was there called respio or respo, and in Spain orciglia, acquired by the urine a purple, or, as others say, a red colour. He therefore tried several experiments; and when he had brought to perfection the art of dyeing wool with this plant, he made it known at Florence, where he alone practised it for a considerable time, to the great benefit of the state. From this useful invention the family received the name of Oricellarii, from which at last was formed Rucellai[77 - Giornale de’ Letterati d’ Italia, t. xxxiii. parte i. p. 231.].

As several documents, still preserved among the Florentine archives, confirm the above account of the origin of this family name, from the discovery of dyeing with oricello[78 - These documents from the Florentine records may be found in Dominici Mariæ Manni de Florentinis Inventis Commentarium. Ferrariæ, 1731, p. 37, from which I have extracted the following: – “One of this family resided formerly a long time in the Levant, where he carried on trade, according to the custom of the Florentine nation. Being one day in the fields, and happening to make water on a plant, of which there was great abundance, he observed that it immediately became extraordinarily red. Like a prudent man, therefore, he resolved to make use of this secret of nature, which till that time had lain hid; and having made several experiments on that herb, and finding it proper to dye cloth, he sent some of it to Florence, where, being mixed with human urine and other things, it has always been employed to dye cloth purple. This plant, which is called respo, is in Spain named orciglia, and by botanists commonly corallina. The mixture made with it is called oricello, and has been of great utility and advantage to the woollen manufacture, which is carried on to greater extent in Florence than in any other city. From this circumstance the individuals of that family, by being the inventors of oricello, have been called Oricellai, and have been beloved by the people for having procured to them this particular benefit. Thus has written John di Paolo Rucellai (Manni says that this learned and opulent man wrote in the year 1451); and the same account is still given by dyers in our city, who relate and affirm that their ancestors have for a century exercised the art of dyeing, and that they know the above from tradition.”This is confirmed by another passage: – “One of this family, on account of the trade carried on faithfully and honestly by the Florentines, travelled to the Levant, and brought thence to Florence the art, or rather secret, of dyeing in oricello.”], we may, in my opinion, consider it as certain that the Europeans, and first the Florentines, were made acquainted with this dye-stuff and its use in the beginning of the fourteenth century. At that time the Italians brought from the East the seeds of many arts and sciences, which, afterwards sown and nurtured in Europe, produced the richest harvests; and nothing is more certain than that the art of dyeing was brought to us from the East by the Italians. I do not believe that the merit of having discovered this dye by the above-mentioned accident is due to that Florentine; but I am of opinion that he learnt the art in the Levant, and on his return taught it to his countrymen, which was doing them no small service[79 - In the genealogical history of the noble families of Tuscany and Umbria, written by P. D. Eugenio Gamurrini, and published at Florence 1668–1673, 3 vols. in folio, is the following account, vol. i. p. 274, of the origin of this family: – “This family acquired their name from a secret brought by one of them from the Levant, which was that of dyeing in oricello, never before used in this country. On that account they were afterwards called Oricellari, as appears from several records among the archives of Florence, and then by corruption Rucellari and Rucellai. Of their origin many speak, and all agree that they came into Tuscany from Britain.”]. After that period the Italians long procured archil from the Levant for themselves, and afterwards for all Europe. I say for a long time, because since the discovery of the Canary Islands the greater part of that substance has been procured from them.

These islands, after being a considerable time lost and forgotten, were again discovered about the end of the fourteenth or the beginning of the fifteenth century, and since that time they have been much frequented by the Europeans. One of the first who endeavoured to obtain an establishment there, was John de Betancourt, a gentleman of Normandy, who in 1400, or, as others say, in 1417, landed on Lancerotta. Amongst the principal commodities which this gentleman and other Europeans brought back with them was archil, which was found there more beautiful and in greater abundance than anywhere else; and Betancourt enjoyed in idea the great profit which he hoped to derive from this article in commerce. Glass is surprised that the Europeans, immediately upon their arrival, sought after this lichen with as much eagerness and skill as they did after gold in America, though they were not so well acquainted with the former as the latter before the discovery of these new lands[80 - The History of the Discovery and Conquest of the Canary Islands, by George Glass. London, 1764, 4to.]. But as this is not true, the wonder will cease.

According to information procured in the year 1731, the island of Teneriffe produced annually five hundred quintals of this moss; Canary, four hundred; Forteventura, Lancerotta, and Gomera, three hundred each; and Fero, eight hundred; making in all two thousand six hundred quintals. In the islands of Canary, Teneriffe and Palma, the moss belongs to the crown; and in the year 1730 it was let by the king of Spain for one thousand five hundred piastres. The farmers paid then for collecting it from fifteen to twenty rials per hundred weight[81 - [Dr. Ure copies this information in his Dictionary, but gives it as the return of an official report for the year 1831!]]. In the rest of the islands it belongs to private proprietors, who cause it to be collected on their own account. In the beginning of the last century a hundred weight, delivered on board at Santa Cruz, the capital of Teneriffe, was worth from only three to four piastres; but since 1725 it has cost labour amounting to ten piastres, because it has been in great request at London, Amsterdam, Marseilles, and throughout all Italy[82 - This information is to be found in Hellot’s Art of Dyeing, into which it has been copied, as appears by the Dictionnaire d’Histoire Naturelle, par Valmont de Bomare, from an account written by M. Porlier, who was consul at Teneriffe in 1731.]. In the year 1726 this lichen cost at London eighty pounds sterling per ton, as we are told by Dillenius, and in 1730 it bore the same price.

Towards the end of the year 1730, the captain of an English vessel, which came from the Cape de Verde islands, brought a bag of archil to Santa Cruz by way of trial. He discovered his secret to some Spanish and Genoese merchants, who, in the month of July 1731, resolved to send a ship to these islands. They landed on that of St. Anthony and St. Vincent, where in a few days they obtained five hundred quintals of this lichen, which they found in such abundance, that it cost them nothing more than a piastre per cent. by way of present to the governor. The archil of the Cape de Verde islands appears larger, richer, and longer than that of the Canaries, and this, perhaps, is owing to its not being collected every year[83 - As the archil grows in the African islands, and on the coast of Africa, Glass supposes that the Getulian purple of the ancients was dyed with it; but this opinion is improbable, for Horace praises “Gætula murice tinctas vestes.”]. Adanson, in 1749, found also the greater part of the rocks in Magdalen island, near Senegal, covered with this lichen. Though the greater part of our archil is at present procured from the Canary and Cape de Verde islands, a considerable quantity is procured also from the Levant, from Sicily, as Glass says, and from the coast of Barbary; and some years ago the English merchants at Leghorn caused this lichen to be collected in the island of Elba, and paid a high price for it[84 - Lettres sur l’Histoire Naturelle de l’Isle d’Elbe, par Koestlin. Vienne, 1780, 8vo, p. 100.].

Our dyers do not purchase raw archil, but a paste made of it, which the French call orseille en pâte. The preparation of it was for a long time kept a secret by the Florentines. The person who, as far as I know, made it first known was Rosetti; who, as he himself tells us, carried on the trade of a dyer at Florence. Some information was afterwards published concerning it by Imperati[85 - Lib. xxvii. c. 9.] and Micheli the botanist[86 - Nova Plantarum Genera. Flor. 1729.]. In later times this art has been much practised in France, England, and Holland. Many druggists, instead of keeping this paste in a moist state with urine, as they ought, suffer it to dry, in order to save a little dirty work. It then has the appearance of a dark violet-coloured earth, with here and there some white spots in it.

The Dutch, who have found out better methods than other nations of manufacturing many commodities, so as to render them cheaper, and thereby to hurt the trade of their neighbours, are the inventors also of lacmus[87 - Some translate this word lacca musica, musiva.], a preparation of archil called orseille en pierre, which has greatly lessened the use of that en pâte, as it is more easily transported and preserved, and fitter for use; and as it is besides, if not cheaper, at least not dearer. This art consists, undoubtedly, in mixing with that commodity some less valuable substance, which either improves or does not much impair its quality, and which at the same time increases its weight[88 - [According to Dr. Ure, the Dutch first reduce the lichen to a fine powder by means of a mill, then mix a certain proportion of potash with it. The mixture is watered with urine and allowed to undergo a species of fermentation. When this has arrived at a certain degree, carbonate of lime in powder is added to give consistence and weight to the paste, which is afterwards reduced into small parallelopipeds, which are carefully dried.]]. Thus they pound cinnabar and smalt finer than other nations, and yet sell both these articles cheaper. In like manner they sift cochineal, and sell it at a less price than what is unsifted.

It was for a long time believed that the Dutch prepared their lacmus from those linen rags which in the south of France are dipped in the juice of the Croton tinctorium[89 - This plant grows in the neighbourhood of Montpelier, and above all, in the flats of Languedoc. In harvest, the time when it is collected, the peasants assemble from the distance of fifteen or twenty leagues around, and each gathers on his own account. It is bruised in a mill, and the juice must be immediately used; some mix with it a thirtieth part of urine. It is poured over pieces of canvas, which they take care to provide, and which they rub between their hands. These rags are dried in the sun, and then exposed, above a stone stove, to the vapour of urine mixed with quick-lime or alum. After they have imbibed the juice of the plant, the same operations are repeated till the pieces of cloth appear of a deep blue colour. They are called in commerce tournesol en drapeaux. Large quantities of them are bought up by the Dutch, who make use of them to colour wines and the rinds of their cheese. – Trans.]; and this idea appeared the more probable, as most of this tournesol en drapeaux was bought up by the Hollanders: but, as they are the greatest adulterators of wine in Europe, they may perhaps have used these rags to colour Pontack and other wines. It is however not improbable that they at first made lacmus of them, as their dye approaches very near to that of archil. At present it is almost certainly known that orseille en pâte is the principal ingredient in orseille en pierre, that is in lacmus[90 - [Lacmus or litmus is now prepared from Lecanora tartarea, the famous Cudbear, so called after a Mr. Cuthbert, who first brought it into use. It is imported largely from Norway, where it grows more abundantly than with us; yet in the Highland districts many an industrious peasant gets a living by scraping off this lichen with an iron hoop, and sending it to the Glasgow market.]]: and for this curious information we are indebted to Ferber[91 - Linn. Mantissa Plantarum, i. p. 132.]. But whence arises the smell of the lacmus, which appears to me like that of the Florentine iris? Some of the latter may, perhaps, be mixed with it; for I think I have observed in it small insoluble particles, which may have been pieces of the roots. The addition of this substance can be of no use to improve the dye; but it may increase the weight, and give the lac more body; and perhaps it may be employed to render imperceptible some unpleasant smell, for which purpose the roots of that plant are used on many other occasions.

Another kind of lichen, different from the roccella, which in commerce is known by the names orseille de terre, orseille d’Auvergne, is used also for the like purpose; but it contains fewer and weaker colouring particles. This species, in botany, is called Lichen Parellus (Lecanora Parella), and is distinguished from the roccella by its figure, as it grows only in a thin rind on the rocks. It is collected in Auvergne, on rocks of granite and volcanic productions, and in some parts of Languedoc; the greater part of it is brought from St. Flour. Its name, perelle, comes from an old Languedocian word pére (pierre, a rock); as roccella, afterwards transformed into orseille, is derived from rocca. The use of perelle is very trifling: the Dutch purchase it to make lacmus, perhaps on account of its low price. This lichen has been found also in Northumberland[92 - See Wallis’s Natural History and Antiquities of Northumberland, 1769, 2 vols. 4to, i. p. 279.] and other mountainous districts of Great Britain, but it is not collected there for any purpose.

MAGNETIC CURES

The external use of the magnet, to cure the tooth-ache and other disorders, is a remedy brought into fashion in modern times, but not a new discovery, as supposed by Lessing, who ascribes it to Paracelsus[93 - In his Kollektaneen. Berlin, 1790, ii. p. 117.]. It was known to Aëtius, who lived so early as the year 500. That author says, “We are assured that those who are troubled with the gout in their hands or their feet, or with convulsions, find relief when they hold a magnet in their hand[94 - Aëtii Op. 1. ii. c. 25.].” He does not however give any proof of this from his own experience: and perhaps he doubted the truth of it. The above passage contains the oldest account known at present respecting this virtue; for the more ancient writers speak only of the internal use of the magnet.

It is evident therefore that this cure has not been discovered in later times, but that it has been preserved by the old physicians copying it from each other into their works. In like manner, many things are mentioned in the Materia Medica which were used or proposed by the ancients, but into the properties of which they never made sufficient inquiry.

Paracelsus recommended the magnet in a number of diseases, as fluxes, hæmorrhages, &c. Marcellus, who lived in the fifteenth century, assures us that it cures the tooth-ache[95 - In Stephani Artis Med. Princip. ii. p. 253.]. The same virtue is ascribed to it by Leonard Camillus[96 - De Lapidibus, lib. ii. p. 131.], who lived in the sixteenth century: and Wecker[97 - J. J. Wecker, De Secretis.], who was nearly co-temporary, says that the magnet when applied to the head, cures the head-ache; and adds that Holler had taken this cure from the works of the ancients[98 - I took the trouble to search for this passage in Jac. Hollerii lib. de morbis internis, Parisiis 1711, 4to, but I could not find it, though the beginning of the book treats expressly of head-aches.]. We read also in Porta[99 - Magia Naturalis, lib. vii.], that it was recommended for the head-ache; and in Kircher[100 - Kircheri Magnes, sive De Arte Magnetica, lib. iii. c. i.], that it was worn about the neck as a preventive against convulsions, and affections of the nerves. About the end of the 17th century magnetic tooth-picks and ear-pickers were made, and extolled as a secret preventive against pains in the teeth, eyes and ears[101 - P. Borrelli, Hist. et Observ. Medico-physic. cent. 4. obs. 75.].

[In addition to these external uses of the magnet, in which it was supposed to act by a peculiar power over the nervous system, it has been employed on account of its true magnetic properties. Thus Kirkringius, Fabricius Hildanus, and subsequently Morgagni, have used it to remove particles of iron which had accidentally fallen into the eyes. Kircher employed it also to cure hernia. The patient took iron-filings internally; and the loadstone in the state of powder mixed with some vegetable substance, thus forming a magnetic plaster, was applied to the hernia. Even Ambrose Paré states on the authority of a surgeon, that several patients had been thus cured.

About the 16th and early in the 17th century, two cases occurred, one near Prague in Bohemia, the other in Prussia, in which a knife was swallowed, but it unfortunately got too far and passed into the stomach. By the application of these magnetic plasters, the point became attracted towards the surface, so that it could be removed by incision[102 - Observations sur l’usage de l’aimant en médecine, par MM. Audry et Thouret.].

In the 18th century, after the properties of magnets had begun to be scientifically investigated, they were made of various forms and their effects studied in numerous parts of Europe, and many treatises were published on their supposed properties. Perhaps the most important and best authenticated, are those of MM. Audry and Thouret. These experimenters believed that they were effective agents.

Since that time, the use of magnets as remedial agents has been almost entirely laid aside and forgotten, it having been found that no constancy was exhibited in the results of their application, and that their occasional supposed efficacy depended upon other circumstances, which were overlooked from the sufferers’ attention being engrossed by the magnet. The application of the magnet to remove small particles of iron or steel which have accidentally fallen into the eyes, has been lately revived. In some manufactories, where these minute particles are constantly thrown off in the grinding of hardware and driven into the eyes, large magnets are kept fixed at a proper height, so that the workmen can resort to them immediately. Such is the case for instance at Fairbairne in Belgium, and we believe the same has been adopted in some of our own manufactories to catch the floating particles, and thus to prevent their being drawn into the lungs during respiration. The reader may form some idea of the effective manner in which magnets can be applied, from the following incident which occurred to Prof. Faraday, whilst experimenting with a powerful (electro-) magnet; an iron candlestick which happened to be standing near its poles on the table at which he was at work flew to them, attracted with such violence as to displace or break everything in its way.

In the 18th century, a new supposed magnetic power was discovered, and with various success has continued to be applied to the delusion of the public. About 1770, Father Hehl, a jesuit, the Professor of Astronomy at Vienna, who had great faith in the influence of the loadstone on human diseases, and had invented steel plates of a peculiar form, which he impregnated with magnetic virtues and applied to the cure of diseases, communicated his discoveries to Anton Mesmer, who subsequently invented animal magnetism or mesmerism. Mesmer made use of his friend Hehl’s plates to employ the magnet according to certain notions of his own. In his subsequent experiments magnets were gradually dispensed with, and as practised in modern times, they have been found unnecessary. Hence mesmerism or animal magnetism has no relation to the magnetism of the magnet, and may therefore form the subject of a future article.

About the year 1798, a man named Perkins invented a method of treating various diseases with metallic bars called tractors; these were applied to and drawn over various parts of the body, and were supposed to cure numerous maladies, such as ulcers, head-aches, &c. These instruments were patented. A few years afterwards, Dr. Falconer had wooden tractors made so exactly to resemble those of Perkins, that they could not be distinguished by the eye; on employing these on a large scale at the Bath hospital, he found that exactly the same effects and cures were produced by one as the other. Since that time these tractors have hardly been heard of, and are now forgotten.

Quite recently, a new means has been contrived in England for deluding the public, in the form of rings, which are to be worn upon the fingers or toes, and are said to prevent the occurrence of, and cure various diseases. They are called galvanic rings. But this invention may be with propriety classed with the real magnet, animal magnetism and tractation.

What has been stated relative to the metallic tractors, equally applies to the magnetic rings; for although by the contact of the two metals of which they are composed an infinitesimally minute current of electricity, hence also of magnetism, is generated, still from the absurd manner in which the pieces of metal composing the ring are arranged, and which displays the most profound ignorance of the laws of electricity and magnetism, no trace of the minute current traverses the finger or toe on which the ring is worn; so that a wooden, any other ring, or none at all, would have exactly the same effect, as regards the magnetism or galvanism.]

SECRET POISON

Under this name are generally understood all poisons which can be administered imperceptibly, and which gradually shorten the life of man, like a lingering disease. They were not first discovered in the 17th century in France and Italy as many believe, but were known to the ancient Greeks and Romans, by whom they were used. I must however allow, that they were never prepared with more art at any period, or in any country, or employed oftener and with more success, than they were in these countries, and at that time. If it be true that they can be prepared in such a manner as to occasion death at a certain period previously determined, or that the person to whom they are given will die within a certain time limited, it must be confessed that the ancient poisoners have been far exceeded by the modern. But this advantage will be considered as scarcely possible, when one reflects upon the many variable circumstances which have an influence on the operation of medicines and poisons; and it has often happened that a company have swallowed the same poison, at the same time, and in the same quantity, some of whom have died sooner and some later, while some have survived. Thus died Pope Alexander VI. in the year 1503, and Cæsar Borgia recovered without any loss of health, though, by the bottles being changed through mistake, he drank of the poison that had been prepared for the other guests alone. At any rate, I am of opinion that the celebrated Tophania, when she engaged to free wives from disagreeable husbands within stated weeks and days, must have had certain and very accurate information respecting their constitution and manner of living, or, as the physicians say, their idiosyncrasy.

Some physicians have doubted respecting secret poison[103 - Heberden in the Neue Hamburg. Mag. xvii. p. 219. I am convinced that many of the accounts we have of the extraordinary effects of poison are fabricated, like those mentioned in Frid. Hoffmanni Dissert. de Læsionibus externis, abortivis Venenis ac Philtris. Francof. 1729, et recusa Lips. 1755. That author, however, denies some which are true. It is, for example, certain that camphor and rue do not produce the effects ascribed to them by Dioscorides, Paulus Ægineta, and others; but there are without doubt other substances which will produce these effects.]; and others have only denied that its effects can with certainty be regulated to a fixed time[104 - Sennerti Instit. Med. ii. 2, 12.]. I agree in opinion with the latter; but the former can be confuted by many examples both of ancient and modern times; for that the ancients were acquainted with this kind of poison, can be proved by the testimony of Plutarch, Quintilian, and other respectable authors. We are told by Plutarch, that a slow poison, which occasioned heat, a cough, spitting of blood, consumption, and a weakness of intellect, was administered to Aratus of Sicyon[105 - He gave to Aratus a poison, not speedy and violent, but of that kind which at first occasions a slow heat in the body, with a slight cough, and then gradually brings on a consumption. One time, when Aratus spat up blood, he said, “This is the effect of royal friendship.” See Plutarch, Vit. Arati.]; and Quintilian in his Declamations, speaks of this poison in such a manner as proves that it must then have been well known[106 - Quint. Declamat. xvii. 11.]. It cannot be said that such an invention was too great for that period, or that it required more knowledge of chemistry than any one possessed; for the Indians in America are acquainted with a most perfect poison of this kind, and can employ it with so much skill, that the person to whom it is given cannot guard against the treachery, even with the utmost precaution, but infallibly dies, though in a lingering manner, often after the expiration of some years[107 - With the poison of the Indians, however, the ancients could not be acquainted, as it is prepared from a plant unknown in Europe before the discovery of America. Kalm, in his Travels, does not name it, and in that he has done right; for, as the plant is now to be found everywhere, no government could guard against a misapplication of it, were it publicly known.].

Theophrastus speaks of a poison which could be moderated in such a manner as to have effect in two or three months, or at the end of a year, or two years; and he remarks that the death, the more lingering it was, became the more miserable. This poison was prepared from aconitum, a plant which, on that account, people were forbidden to have in their possession, under pain of capital punishment[108 - They say a poison can be prepared from aconite so as to occasion death within a certain period, such as two, three, or six months, a year, and even sometimes two years. Those, we are told, whose constitutions are able to hold out longest, die in the greatest misery; for the body is gradually consumed, and must perish by continual wasting. Those die easiest who die speedily. No remedy has been found out for this poison. – Theophr. Hist. Plant. ix. c. 16.]. He relates also, that Thrasyas had discovered a method of preparing from other plants a poison which, given in small doses of a drachm, occasioned an easy but certain death, without any pain, and which could be kept back for a long time without causing weakness or corruption. This Thrasyas, whose scholar Alexias carried the art still further, was a native of Mantinea, a city in Arcadia, and is celebrated by Theophrastus on account of his abilities, and particularly his knowledge of botany; but those are mistaken who ascribe to him the discovery of secret poison.

This poison was much used at Rome about two hundred years before the Christian æra. As several persons of distinction died the same year at that period, and of the like distemper, an inquiry being made into the cause, a maid-servant gave evidence against some ladies of the first families, who, she said, prepared and distributed poison; and above a hundred and fifty of them were convicted and punished[109 - Livius, lib. viii. c. 18.]. As so many had learnt this destructive art, it could not be suppressed; and we find sufficient proofs in the Roman history that it was continually preserved. Sejanus caused such a secret poison to be administered by an eunuch to Drusus, who gradually declined afterwards, as by a consumptive disorder, and at length died[110 - Taciti Annal. lib. iv. c. 8.]. Agrippina, being desirous of getting rid of Claudius, but not daring to despatch him suddenly, and yet wishing not to leave him sufficient time to make new regulations respecting the succession to the throne, made choice of a poison which should deprive him of his reason, and gradually consume him. This she caused to be prepared by an expert poisoner, named Locusta, who had been condemned to death for her infamous actions, but saved that she might be employed as a state engine. The poison was given to the emperor in a dish of mushrooms; but as, on account of his irregular manner of living, it did not produce the desired effect, it was assisted by some of a stronger nature[111 - The account given by Tacitus deserves to be read; see lib. xii. c. 66.]. This Locusta prepared also the poison with which Nero despatched Britannicus, the son of Agrippina, whom his father Claudius wished to succeed him on the throne. As this poison occasioned only a dysentery, and was too slow in its operation, the emperor compelled Locusta by blows, and by threatening her with death, to prepare in his presence one more powerful. It was first tried on a kid; but as the animal did not die till the end of five hours, she boiled it a little longer, until it instantaneously killed a pig to which it had been given, and this poison despatched Britannicus as soon as he had tasted it[112 - The history of this horrid affair may be found both in Tacitus, Annal. xiii. c. 15 and 16, and in Suetonius, vi. cap. 33. Respecting Locusta, see also Juvenal, sat. i. 71.]. For this service the emperor pardoned Locusta, rewarded her liberally, and gave her pupils whom she was to instruct in her art, in order that it might not be lost.

The art of preparing this poison must have been well understood also at Carthage. When M. Attilius Regulus, the Roman general, who had been taken by the Carthaginians, was sent to Rome to propose to the senate that the Carthaginian prisoners might be restored in exchange for him, he prevented this negotiation, because he knew that a poison had been administered to him, by which the state would soon be deprived of his services. He returned, therefore, to Carthage, in compliance with the promise he had made to the enemy, who put him to death with the most exquisite torture[113 - This account is given by Aulus Gellius from the now lost works of Tuditanus. – Noct. At. lib. vi. cap. 4. Cicero often speaks of the magnanimity of Regulus; as, for example, in his Oration against Piso, and in his Offices, book iii. chap. 27; but he makes no mention of his having been poisoned. Valerius Maximus also, book i. chap. i. 14, says nothing of poison.].

All these poisons were prepared from plants, particularly aconite, hemlock and poppy, or extracted from animal substances. Among those made from the latter, none is more remarkable than that supplied by the sea-hare, lepus marinus, with which, as Philostratus says[114 - Apollonii Vit. lib. vi. c. 14.], Titus was despatched by Domitian. Without here attempting to define the substances employed by the ancients to compose their poisons, I shall only observe, that the lepus marinus, the terrible effects of which are expressly mentioned by Dioscorides, Galen, Nicander, Aëtius, Ælian[115 - Histor. Animal. lib. ii. c. 45.], Pliny[116 - Lib. ix. c. 48, and lib. xxxii. c. 1.], and others, is that animal called at present in the Linnæan system Aplysia depilans[117 - In Linnæi Systema Nat., through an error of the press, stands Laplysia, which word has since become common. Ἀπλυσία signifies an uncleanness which cannot be washed off; and in Aristotle’s History of Animals, b. v. ch. 15, and Pliny, b. ix. ch. 45, it is the name of a zoophyte. In the like manner other errors in the System of Linnæus have been copied into the works of others, such as Dytiscus instead of Dyticus, &c.], as Rondelet conjectured, and has been since fully proved by Bohadsch[118 - J. B. Bohadsch De quibusdam animalibus marinis. Dresdæ, 1761, 4to, p. 1–53. In this work there is a full description, with a figure of this animal, under the name of Lernæa, which was used in the first editions of Linnæus.]. This animal poison however seems to have been seldom used, as it easily betrays itself by some peculiar symptoms. It appears that it was not known to Aristotle, at least he makes no mention of it[119 - The accounts given by the ancients of the sea-hare have been collected in Grevini Lib. de Venenis, Antverpiæ 1571, p. 209. In the Annals of Glycas, iii. (Script. Byz.), it is said that Titus was despatched by this poison; and in the first book, b. 27, he says the sea-hare occasions speedy and inevitable destruction to man.]. With the far stronger, and now common mineral poisons the ancients were not acquainted; for their arsenic was what we call orpiment, and not that pernicious metallic oxide which formed the principal ingredient of those secret poisons which in latter times were in France and Italy brought to a diabolical perfection[120 - See Stenzelii Diss. de venenis terminatis et temporaneis, quæ Galli les poudres de succession vocant; resp. J. G. Arnold. Vitebergæ, 1730. This tract contains several historical relations; but the reader is often referred to authors who either do not say that for which they were quoted, or who must relate the same thing in a different manner in some other place. As for example, Galen in b. ii. c. 7, De Antidotis, speaks of poisons without mentioning secret poison in particular. Avicenna is made to say, in his book De Viribus Cordis, that the Egyptian kings often employed this poison; but if by that quotation we are to understand Fen. undecima de dispositionibus cordis, I have sought for this information in vain. In lib. iv. fen. 6. tract. 2. c. 14, it is said “Fel canis aquatici interficit post hebdomadam.” Rhodiginus also does not relate that for which he is quoted by Stenzel. p. 7.].

<< 1 2 3 4 5 6 7 ... 88 >>
На страницу:
3 из 88

Другие электронные книги автора Johann Beckmann