Оценить:
 Рейтинг: 0

A History of Inventions, Discoveries, and Origins, Volume I (of 2)

Год написания книги
2017
<< 1 2 3 4 5 6 7 8 9 ... 88 >>
На страницу:
5 из 88
Настройки чтения
Размер шрифта
Высота строк
Поля
Fiacres were introduced at Warsaw, for the first time, in 1778. In Copenhagen there are a hundred hackney coaches[195 - Haubers Beschr. von Copenhagen, p. 173.].

In Madrid there are from four to five thousand gentlemen’s carriages[196 - Twiss’s Travels through Spain and Portugal.]; in Vienna three thousand, and two hundred hackney coaches.

At Amsterdam coaches with wheels were in the year 1663 forbidden, in order to save the expensive pavement of the streets; for coaches there, even in summer, are placed upon sledges, as those at Petersburgh are in winter. The tax upon carriages in Holland has from time to time been raised, yet the number has increased; and some years ago the coach horses in the Seven United Provinces amounted to twenty-five thousand.

When Prince Repnin made his entrance into Constantinople in 1775, he had with him eighty coaches, and two hundred livery servants.

[Since the former edition of this work, published in 1814, public conveyances have undergone considerable changes. Stage-coaches, which in this country had arrived at such a degree of perfection, and which, till within a few years, passed through and connected almost every small town in the United Kingdom, have now nearly disappeared in consequence of the introduction of railroads. It is also rare in London to meet with a solitary hackney coach, this class of vehicles being almost entirely superseded by the lighter one-horsed cabriolets which were first introduced as public conveyances in the year 1823. The number of hackney coaches and cabriolets now plying for hire in the streets of London amounts to 2650, of which probably not more than 250 are two-horsed coaches.

That very useful form of public conveyance, the omnibus, which is at present met with in nearly every large town in Europe, originated in Paris in 1827. In the latter part of 1831 and the beginning of 1832, omnibuses began to ply in the streets of London. Those running from Paddington to the Bank were the earliest. Carriages, however, of a similar form were used in England as Long Stages more than forty years ago, but were discontinued as they were not found profitable. They were in most request at holiday time, by schoolmasters in the neighbourhood of London; and some even of the present generation will remember their joyous pranks on journeying home in these capacious machines.

There are now about 900 omnibuses running in London and its immediate vicinity. The line from Paddington to the Bank is served by two companies, the London Conveyance Company, and the Paddington Association, which have mutually agreed to run forty omnibuses each. An idea of the utility of these conveyances may be formed from the fact that the receipts of each of the eighty carriages on the above line averages 1000l. per annum, in sixpences.

Omnibuses began to run in Amsterdam in 1839.]

WATER-CLOCKS, CLEPSYDRAS

We are well assured that the ancients had machines by which, through the help of water, they were able to measure time[197 - [Sextus Empiricus (Adv. Math. cap. 21) says that the Chaldæans divided the zodiac into 12 equal parts, as they supposed, by allowing water to run out of a small orifice during the whole revolution of a star, and dividing the fluid into 12 equal parts, the time answering to each part being taken for that of the passage of a sign over the horizon.]]. The invention of them is by Vitruvius[198 - Lib. ix. c. 9.] ascribed to Ctesibius of Alexandria, who lived under Ptolemy Euergetes, or about the year 245 before the Christian æra[199 - [Some mode of measuring time by the reflux of water, however rude it might be, was used at Athens before the time of Ctesibius, as we see by various passages in Demosthenes.]]. They were introduced at Rome by P. Cornelius Scipio Nasica, in the year 594 after the building of the city, or about 157 years before the birth of Christ. How these water-clocks were constructed, or whether they were different from the clepsydras, I shall not inquire. If under the latter name we understand those measurers of time which were used in courts of justice, the clepsydra is a Grecian invention, first adopted at Rome under the third consulship of Pompey[200 - Auctor Dialog. de Caus. Cor. Eloq. 38. – The orators were confined to a certain time; and hence Cicero says, latrare ad clepsydram.]. The most common kinds of these water-clocks all, however, corresponded in this, that the water issued drop by drop through a hole of the vessel, and fell into another, in which a light body that floated marked the height of the water as it rose, and, by these means, the time that had elapsed. They all had this failing in common, that the water at first flowed out rapidly, and afterwards more slowly, so that they required much care and regulation[201 - Some account of the writers who have spoken of the water-clocks of the ancients may be found in Fabricii Bibliograph. Antiquaria, p. 1011. They were formerly used for astronomical observations. The authors who treat of them in this respect are mentioned in Riccioli Almagest. Novo, i. p. 117.].

That ingenious machine, which we have at present under the name of a water-clock, was invented in the seventeenth century. The precise time seems to be uncertain; but had it been before the year 1643[202 - In that year Kircher’s Ars Umbræ et Lucis was published for the first time. In the edition of 1671, several kinds of water-clocks are described, p. 698.], Kircher, who mentions all the machines of this kind then known, would in all probability have taken notice of it. It consists of a cylinder divided into several small cells, and suspended by a thread fixed to its axis in a frame on which the hour distances, found by trial, are marked out. As the water flows from the one cell into the other, it changes very slowly the centre of gravity of the cylinder, and puts it in motion[203 - A particular account of these water-clocks is to be found in Ozanam, Recréations Math. et Physiques [republished in Hutton’s Mathematical Recreations, ii. 40]. Bion on Mathematical Instruments.]; much like the quicksilver puppets invented by the Chinese[204 - Muschenbroek, Philos. Natur. i. p. 143.].

These machines must have been very scarce in France in 1691; for Graverol at that time gave a figure and description of the external parts of one, but promised to give the internal construction as soon as he should become acquainted with it[205 - Journal des Sçavans, 1691.]. This was the only one then in Nismes. He says, also, that they were invented a little before by an Italian Jesuit, who resided at Bologna, but were brought to perfection by Taliaisson, professor of law at Toulouse, and a young clergyman named De l’Isle.

Alexander says more than once that this machine was invented at Sens in Burgundy, in 1690, by Dom Charles Vailly, a Benedictine of the brotherhood of St. Maur, and that he brought it to perfection by the assistance of a pewterer there, named Regnard. This account is in some measure confirmed by Ozanam; for he says expressly, that the first water-clocks were brought from Burgundy to Paris in 1693, and he describes one which was made of tin at Sens. Dom Charles Vailly was born at Paris in 1646, and died in 1726; he was celebrated on account of his mathematical knowledge, though he is known by no works, as he burned all his manuscripts[206 - This monk may be considered as the restorer of the clepsydra, or clock which measures time by the fall of a certain quantity of water confined in a cylindric vessel. These clocks were in use among ancient nations. They are said to have been invented at the time when the Ptolemies reigned in Egypt. Dom Vailly, who applied himself particularly to practical mathematics, having remarked the faults of these clocks, bestowed much labour in order to bring them to perfection; and by a number of experiments, combinations, and calculations, he was at length able to carry them to that which they have attained at present. At the time of their arrival they were very much in vogue in France. – Hist. Littéraire de la Congr. de St. Maur, ordre de S. Bénoit. Bruxelles, 1770, 4to, p. 478.].

Alexander, however, who was of the same order, seems to have ascribed to his brother Benedictine an honour to which he was not entitled; for Dominic Martinelli, an Italian of Spoletto, published at Venice, in 1663, a treatise written expressly on these water-clocks, which Ozanam got translated into French by one of his friends, and caused to be printed with his additions[207 - Ozanam, ii. p. 475.]. This translator says that water-clocks were known in France twenty years earlier than Ozanam had imagined. It appears therefore that they were invented in Italy about the middle of the seventeenth century, and that Vailly, perhaps, may have first made them known in France[208 - Alexander will not admit this to be the case. “It is possible,” says he, “that two persons of penetrating genius may have discovered the same thing.”].

It may perhaps afford some pleasure to those who are fond of the history of the arts, to know that Salmon, an ingenious pewterer at Chartres in France, has given very full and ample directions how to construct and use this machine[209 - Art du potier d’étain, par Salmon. Paris, 1788, fol. p. 131.]. He is of opinion that the invention is scarcely a century old; and that these water-clocks, which are now common, were first made for sale and brought into use among the people in the country, by a pewterer at Sens in Burgundy. What this artist affirms, that they can be constructed of no metal so easily, so accurately, and to last so long as of tin, is perfectly true. I have however in my possession one of brass, which is well constructed; but it suffers a little from acids. Among the newest improvements to this machine may be reckoned an alarum, which consists of a bell and small wheels, like those of a clock that strikes the hours, screwed to the top of the frame in which the cylinder is suspended. The axis of the cylinder, at the hour when one is desirous of being wakened, pushes down a small crank, which, by letting fall a weight, puts the alarum in motion. A dial-plate with a handle is also placed sometimes over the frame.

[A very ingenious application of the principle of the clepsydra, for the purpose of measuring accurately very small intervals of time, is due to the late Captain H. Kater. Mercury is allowed to flow from a small orifice in the bottom of a vessel, kept constantly filled to a certain height. At the moment of noting any event, the stream is interrupted and turned aside into a receiver, into which it continues to run till the moment of noting any other event, when the intercepting cause is suddenly removed. The stream then flows in its original course. The weight of mercury in the receiver, compared with the weight of that which passes through the orifice in a given time, observed by the clock, gives the interval between the events.]

TOURMALINE

The ancients, though ignorant of electricity, were acquainted with the nature of amber, and knew that when rubbed it had the power of attracting light bodies. In like manner they might have been acquainted with the tourmaline, and might have known that it also, when heated, attracted light bodies, and again repelled them; for had they only bethought themselves, in order to search out the hidden properties of this stone (which on account of its colour and hardness is very remarkable), to put it into the fire, they would have then seen it sport with the ashes. Some learned men have thought they found traces of the properties of this stone, in what the ancients tell us respecting the lyncurium, theamedes, and carbunculus. The fruit of my researches respecting this subject I shall here lay before the reader. All that we find in the ancients to enable us to characterize the lyncurium is, that it was a very hard stone, which could with difficulty be cut; that seals were formed of it; that it was transparent, and of a fiery colour, almost like that of yellow amber; that it attracted light bodies, such as chaff, shavings of wood, leaves, feathers, and bits of thin iron and copper leaf, in the same manner as amber; that the ancients procured it from Æthiopia, but that in the time of Pliny no stone was known under that name[210 - Theophrast. De Lapidibus, edit. Heinsii, fol. p. 395, and Plin. lib. xxxvii. c. 3, and lib. viii. c. 38.].

This information proves, in my opinion, that the lyncurium cannot be the belemnites, as some old commentators and Woodward have affirmed; for the latter has not the celebrated hardness and transparency of the former, neither has it the property of attracting light bodies, nor is it fit for being cut into seals. That opinion probably has arisen in the following manner: – the ancients supposed that the lyncurium was the crystallized urine of the animal which we call the lynx. As some belemnites contain bituminous particles which give them an affinity to the swine-stone, naturalists, when they have rubbed or heated yellow and somewhat transparent pieces of this fossil, have imagined that they smelt the fabulous origin of the lyncurium.

Less ridiculous is the opinion of some old and modern writers, that the lyncurium was a species of amber. Theophrastus, however, the ablest and most accurate mineralogist of the ancients, would certainly have remarked this and not have separated the lyncurium from amber. Besides, the latter has not the hardness of the former, nor can it be said that it is difficult to be cut; for at present it is often made into various toys with much ingenuity. The opinion of Pliny is here of little weight; for it is founded, as ours must be, on the information of Theophrastus.

Epiphanius, who considered the Bible as a system of mineralogy, but could not find the lyncurium in it, supposes that it may have been the hyacinth[211 - Epiphanius De XII Gemmis.]. However ridiculous the cause of this conjecture may be, it must be allowed that it is not entirely destitute of probability; and I say with John de Laet, “The description of the lyncurium does not ill agree with the hyacinth of the moderns[212 - J. de Laet De Gemmis. 1647, 8vo, p. 155.].” If we consider its attracting of small bodies in the same light as that power which our hyacinth has in common with all stones of the glassy species, I cannot see anything to controvert this opinion, and to induce us to believe the lyncurium and the tourmaline to be the same. The grounds which Watson produces for this supposition, are more in favour of the hyacinth than the tourmaline[213 - Phil. Trans. vol. li. 1. p. 394.]. Had Theophrastus been acquainted with the latter, he would certainly have remarked that it did not acquire its attractive power till it was heated. At present, at least, no tourmaline is known to attract until it is heated; though it would not appear very wonderful if a stone like the magnet should retain its virtue for a long time.

The duke of Noya Caraffa believes the theamedes of the ancients to have been the tourmaline[214 - Recueil de Mem. sur la Tourmaline, par Æpinus. Petersb. 1762, 8vo, p. 122.]. Of that stone we are told, by Pliny, only that it possessed a power contrary to the power of the magnet; that is, that it did not attract but repel iron. But this only proves, that it had then been remarked that the magnet repelled the negative pole of a piece of magnetic iron. This account has been thus explained by Boot[215 - Gemm. et Lapidum Historia. 1647, 8vo, p. 441, 450.]. To induce us to consider the theamedes as the tourmaline, Pliny ought to have said that it attracted iron and then repelled it.

With much greater probability may we consider as the tourmaline a precious stone, classed by Pliny among the numerous varieties of the carbuncle[216 - Plin. lib. xxxvii. c. 7.]; for however perplexed and unintelligible his account of the carbuncles may be, and however much the readings in the different copies may vary, we still know that he describes a stone which was very hard; which was of a purple, that is a dark violet colour, and used for seals; and which, when heated by the beams of the sun, or by friction, attracted chaff and other light bodies. Had Pliny told us that it at first attracted and then repelled them, no doubt would remain; but he does not say so, nor do his transcribers Solinus and Isidorus[217 - India produces also the lychnites, the splendour of which is heightened when seen by the light of lamps; and on this account it has been so called by the Greeks. It is of two colours; either a bright purple, or a clear red, and if pure is thoroughly transparent. When heated by the rays of the sun, or by friction, it attracts chaff and shavings of paper. It obstinately resists the art of the engraver. – Solinus, c. lii. p. 59. Traj. 1689, fol.].

A much later account of a stone that, when rubbed, is, like the magnet, endued with an attractive power is to be found in a passage of John Serapion, the Arabian, pointed out to me by Professor Bütner[218 - “Hager albuzedi is a red stone, but less so than the hyacinth, the redness of which is more agreeable to the eye, as there is no obscurity in it. The mines where this stone is found are in the East. When taken from the mine it is opake; but when divested of its outer coat by a lapidary, its goodness is discovered, and it becomes transparent. When this stone has been strongly rubbed against the hair of the head it attracts chaff, as the magnet does iron.” – Serapionis Lib. de simplicibus medicinis. Argent. 1531, fol. p. 263.]. This stone indeed cannot with much probability be taken for the tourmaline, as all precious stones, when heated, have the same property; but it is worthy of remark, that, like the lyncurium of the ancients, it belongs to the hyacinths, the colour of which many of the real tourmalines have; and among those of the island of Ceylon there are, perhaps, some which ought to be classed among the hyacinths, rather than among the schorls.

The real tourmaline was first brought from Ceylon, and made known by the Dutch, about the end of the seventeenth or beginning of the eighteenth century. It is commonly believed that the first account of it ever published is that to be found in the Memoirs of the Academy of Sciences at Paris for the year 1717; but it appears that fuller and more accurate descriptions of the properties of that stone were given in German works ten years before. The earliest information that I know respecting it is in a book now almost and justly forgotten, entitled Curious Speculations during Sleepless Nights[219 - Curiöse Speculationes bey Schlaf-losen Nächten, 8vo, Chemnitz, 1707. The author’s name appears to be expressed by the initials I. G. S. This work consists of forty-eight dialogues, each twelve of which have a distinct title.]. In a passage, where the author, speaking of hard and glassy bodies which attract light substances, affirms that this property is not magnetic, he says, “The ingenious Dr. Daumius, chief physician to the Polish and Saxon troops on the Rhine, told me, that in the year 1703 the Dutch first brought from Ceylon in the East Indies a precious stone called tourmaline, or turmale, and named also trip, which had the property, that it not only attracted the ashes from the warm or burning coals, as the magnet does iron, but also repelled them again, which was very amusing; for as soon as a small quantity of ashes leaped upon it, and appeared as if endeavouring to writhe themselves by force into the stone, they in a little sprang from it again, as if about to make a new effort; and on this account it was by the Dutch called the ashes-drawer. The colour of it was an orange-red heightened by a fire colour. When the turf coals were cold, it did not produce these effects, and it required no care like the magnet. I have considered whether it would not attract and repel the ashes of other burning coals as well as those of turf; and I have no doubt, that, if heated, it would attract other things besides ashes.”

This whole passage has been inserted word for word, without variation or addition, and without telling the source from which taken, in a book perhaps equally forgotten, called Observationes curioso-physicæ, or Remarks and Observations on the great Wonders of the World, by Felix Maurer, physician[220 - Frankf. 1713, 8vo.]. This thick volume is entirely compiled from a number of works, the names of which are not mentioned.

In the Catalogue of the collection of natural curiosities belonging to Paul Hermann, which were sold at Leyden in June 1711, I find, among the precious stones, Chrysolithus Turmale Zeylon. Though no description is added, it cannot be doubted that our tourmaline is meant. From this however we learn that the name together with the stone came to us from Ceylon, as Watson has remarked. We learn further, that the stone was at first considered as a chrysolite, and perhaps it may be mentioned under this name in the old accounts of Ceylon. Hermann, whose service to botany is well known, was in that island from 1670 to 1677; and it might be presumed, from his spirit of inquiry, that, had he known this stone, he would somewhere or other in his works have taken notice of its properties: but I find no mention of it either in his Cynosura Materiæ Medicæ, or in Musæum Zeylonicum.

In the year 1719 the Academy of Sciences at Paris announced in their memoirs for 1717, that in the latter year M. Lemery had laid before them a stone found in a river in the island of Ceylon, which attracted and repelled light bodies[221 - I shall here lay before the reader the whole passage, taken from Histoire de l’Académie for 1717, p. 7: – “Here we have a small magnet. It is a stone found in a river of the island of Ceylon. It is of the size of a denier, flat, orbicular, about the tenth part of an inch in thickness, of a brown colour, smooth and shining, without smell and without taste, which attracts and afterwards repels small light bodies, such as ashes, filings of iron, and bits of paper. It was shown by M. Lemery. It is not common, and that which he had cost twenty-five livres (about twenty shillings sterling). When a needle has been touched with a loadstone, the south pole of the loadstone attracts the north pole of the needle, and repels its south pole: thus it attracts or repels different parts of the same body, according as they are presented to it, and it always attracts or repels the same. But the stone of Ceylon attracts, and then repels in the like manner, the same small body presented to it: in this it is very different from the loadstone. It would seem that it has a vortex…”]. It is there called a small magnet, though some difference between the two stones was admitted; but the German naturalist before-mentioned, denies that the tourmaline is endowed with magnetic virtue. It is however very remarkable, that though it is said, in the Memoirs of the Academy, that it has the power of attracting and repelling, no mention is made that it acquires that property, only after it has been heated, which is expressly remarked by the German. Those therefore who wish to ascribe to the ancients a knowledge of the tourmaline may say, If the editor of the Memoirs of the French Academy could forget this circumstance, is it not highly probable that Theophrastus might have forgot it in describing the lyncurium; Pliny, in describing the carbuncle; and Serapion, in describing his hyacinth?

After this period the tourmaline must have been very scarce in Europe; for when Muschenbroek made his well-known experiments with the loadstone, and spared no labour to carry them to the utmost extent, he was not acquainted with the nature of the tourmaline, which, according to the account given of it by the Academy at Paris, he considered as a magnet, as he himself says in the preface to his first dissertation, published in 1724.

About the year 1740 however some German naturalists made experiments with this stone, in order to discover the real cause of its attractive property. These may be seen, under the article Trip, in the well-known Dictionary of Natural History which is often printed with Hübner’s preface; but I do not know to whom the honour belongs of having first investigated the properties of this stone. As the above dictionary is common, I shall give here only a very short extract from it: – “This stone was brought to Holland by some persons who had travelled in India, from the island of Ceylon, where it is found pretty frequently among the fine sand near Columbo, and sold to the German Jews. These caused it to be cut thinner, and the price of it soon rose to eight and ten Dutch florins. It has been since much dearer; but at present it is cheaper. It attracts not only ashes, but also metallic calces: it however attracts more easily and with greater force those which have been formed by means of sal-ammoniac, or the spirit of that salt. It acquires its attractive power only after it has been moderately heated; for when cold or heated to a greater degree it produces no effect, which the author ascribes to its being united with martial sulphur. The chrysolites and other precious stones of the island do not possess the same property.” As the author quotes the Laboratorium Zeylonicum, I consulted it, but found no information in it respecting the tourmaline. The first person who thought of explaining the property of the tourmaline by electricity was the great Linnæus, who in the preface to his Flora Zeylanica[222 - “I must not omit to mention that the rivers contain the electric stone, which is of the size of a halfpenny, flat, orbicular, shining, smooth, of a brown colour, one-tenth of an inch in thickness, without smell and without taste, and which attracts light bodies, such as ashes, filings of iron, shavings of paper, &c., and afterwards repels them. A wonderful and singular property, discovered and observed in this stone alone, when neither heated by motion nor by friction.”], where he enumerates the productions of the island, calls it the electrical stone; but at that time, as he himself afterwards told me, he had not seen it.

What Linnæus only conjectured, Æpinus proved at Berlin in 1757 by accurate observation and experiments, when endeavouring with Wilke to investigate the secret of negative and positive electricity. The history of their discoveries I shall here omit, as a better account of them than I could give has been published in the Transactions of the Swedish Academy by Wilke.

[The discovery by Huygens, in 1678, of the polarization of light by double refraction, laid the foundation of a much more important application of the tourmaline; for MM. Biot and Seebeck, in their subsequent experiments, discovered that certain yellowish tourmalines, that is, those which are yellowish by refracted light, possessed the remarkable property of absorbing or checking one of the rays of a beam of polarized light, and transmitting the others. This discovery led to the use of tourmalines in most experiments which were subsequently made with polarized light. For this purpose, the tourmaline, which generally crystallizes in the form of a long prism, is cut lengthwise, that is, parallel to the axis of the prism, into plates about the 30th of an inch thick.

The invention of Mr. Nichol of a method of destroying one of the rays of a polarized beam in a crystal of calcareous spar, has however in later times entirely replaced the use of the tourmaline in optical science, the colour of the tourmaline being a disadvantage which is entirely removed in the use of Nichol’s prism[223 - [Light is called polarized, which, having been once reflected or refracted, is incapable of being again reflected or refracted in certain positions of the second medium. Ordinarily, light which has been reflected from a pane of glass or any other substance, may be a second time reflected from another surface, and will also freely pass through transparent bodies. But if a ray of light be reflected from a pane of glass at an angle of 57°, it is rendered totally incapable of reflexion from the surface of another pane in some positions, whilst it will be completely reflected by it in others. If a plate of tourmaline, cut in the manner described above, or a Nichol’s prism be held between the eye and a candle, and turned slowly round in its own plane, no change will take place in the image of the candle; but if the plate or prism be fixed in a vertical position, on interposing another of the same kind between the former and the eye, parallel to the first, and turning it round slowly in its own plane, the image of the candle will be found to vanish and re-appear alternately at each quarter turn of the plate, varying through all degrees of brightness down to total or almost total evanescence, and then increasing again by the same degrees as it had before decreased. These changes depend upon the relative positions of the plates; when the longitudinal sections of the two plates are parallel, the brightness of the image is at its maximum; and when the axes of the sections cross at right angles, the image of the candle vanishes. Thus the light, in passing through the first plate of tourmaline, has acquired a property totally different from the ordinary light of the candle; the latter would penetrate the second plate equally well in all directions, whereas the altered light will only pass through it in particular positions, and is altogether incapable of penetrating it in others. The light is polarized by passing through the first plate or prism. Thus, one of the properties of polarized light is proved to be the incapability of passing through a plate of tourmaline perpendicular to it in certain positions, and its ready transmission in other positions at right angles to the former.]].]

SPEAKING-TRUMPET

Instruments by which the voice could be so strengthened as to be heard at a much greater distance than would otherwise have been possible, were known in the earliest ages; for of all musical instruments, wind instruments were first invented, and their use in war to give the signal of battle, we find mentioned in Job[224 - Goguet. i. p. 326.]. It had been remarked, even in Pliny’s time, that the least touch of a beam of wood could be heard when the ear was applied to the other end[225 - Plin. lib. xvi. c. 38, p. 32.]. It was known likewise that the larger trumpets emitted a louder and stronger sound. The Grecians had a wind instrument with the bellowing noise of which the people who were placed to guard the vineyards frightened away the wild animals[226 - Septalii Comm. in Aristotelis Problem. Lugd. 1632, fol. p. 206. There is also a passage to the same purpose in Seneca, Epist. 108.]. All these wind instruments however were little in comparison with the monstrous trumpets of the ancient Chinese, a kind of speaking-trumpets, or instruments by which words could not only be heard at the greatest distance possible, but could be also understood[227 - See Anciennes Relations des Indes et de la Chine, de deux voyageurs Mahometans, qui y allèrent dans le neuvième siècle. Par Renaudot. Paris, 1718, 8vo, p. 25.]. This invention belongs to the 17th century, though some think that traces of it are to be found among the ancient Grecians.

Kircher, as far as I have been able to learn, was the first person who made known, from a very ancient manuscript of Aristotle, De Secretis ad Alexandrum Magnum, preserved in the Vatican, that Alexander had a prodigious large horn with which he could assemble his army at the distance of a hundred stadia, or eight Italian miles. It was, according to the manuscript, five cubits in diameter; and Kircher, who gives a figure of it, which he says he found in the manuscript, thinks that, on account of its size, it must have been suspended from a beam by a ring. This horn has by many been considered as the oldest speaking-trumpet[228 - Ars magna lucis et umbræ. Amst. 1671, fol. p. 102. Kircher repeats this account with some new circumstances in his Phonurgia, p. 132.], but in my opinion without reason. Aristotelis Secretum Secretorum ad Alexandrum Magnum I have never had an opportunity to see. It appears to have been printed only once, and is, like all the other works ascribed to that philosopher, extremely scarce; for they have all had the fate of being little regarded after it became the unanimous opinion of the learned that they were forged. These works, however, are old; some of them indeed very old: and, if some one would take the trouble to fix their antiquity, they might be used with advantage on many occasions. Morhof had in his possession the edition of that book published by Alexander Achillinus, a physician at Bologna, in 1516, which is a Latin translation from the Arabic[229 - Morhofii Diss. de vitro per vocis sonum rupto, in Dissertationibus Academicis. Hamburgi 1669, 4to, p. 381.]. If we compare what is said there and by Kircher, we may make the following conclusion: —

In the first place, it is certain that the book itself, as well as the whole account, is not the production of Aristotle, for in all the writers who relate the actions of Alexander we do not find the least mention of such a horn. Secondly, it is not expressly said in that work that Alexander spoke through this horn, but only that he assembled his soldiers by it, which in past times was done by the sound of a trumpet, and at present is done both by trumpets and drums. It appears also that the author of the book, perhaps an Arabian, intended to give the reader an idea of a horn that had an uncommonly strong and loud sound. Thirdly, Kircher’s account and figure of the horn do not agree with that which Morhof found in the edition of Achillinus[230 - Morhof quotes the following passage: – “With this brazen horn, constructed with wonderful art, Alexander the Great called together his army at the distance of sixty miles. On account of its inestimable workmanship and monstrous size, it was under the management of sixty men. Many kinds of sonorous metals were combined in the composition of it.”]. Lastly, none of these descriptions are such that an instrument to serve as a speaking-trumpet could be constructed from them.

Wolf and other mathematicians are of opinion that the most advantageous form of a speaking-trumpet would be found with more certainty by experience than by theory. It may then be asked, whether any one ever caused such an instrument to be made from these descriptions. Kircher, who attempted things much more improbable, says he never tried it. Duhamel however relates that a Frenchman tried it, and discovered the real instrument[231 - “Among many things which the celebrated D’Alance caused to be made for this purpose, the trumpet ascribed to Alexander, and with which he called together his army, ought not to be omitted. As the figure of it was represented in an old manuscript in the Vatican library, and had been described by Bettini, that learned man was desirous of trying whether it could be proved by experience, and the attempt succeeded; for that kind of trumpet, if it does not excel, seems undoubtedly to equal the other instruments constructed for that end.”]; but this information is of little weight, as it is much to be doubted that this Frenchman caused it to be made sufficiently exact according to the ancient description. I am as little acquainted with Bettini as Morhof; but I suspect that Duhamel meant Mar. Bettini, who, without making the smallest mention of Alexander’s horn, proposes only a tube, the one end of which should be applied to the mouth of a person who speaks, and the other to the ear of one who is dull of hearing[232 - Bettini Apiaria univ. Philosophiæ Mathemat. Bonon. 1642, fol. p. 38.]. This was rather an ear-trumpet than a speaking-trumpet, and it is certain that the former was invented before the latter.

What we read in Porta, and what many think alludes to a speaking-trumpet, alludes evidently to an ear-trumpet only. That author infers, very justly, from the form of the ear, and particularly from that of the ears of those animals which are quick of hearing, that to hear at a distance one must apply to the ear a kind of wide funnel, as people to strengthen the sight use spectacles[233 - Magia Natural. lib. xx. c. 5.]. He asserts also, with equal truth, that one, through a long tube, can convey a whisper to the ear of another person at a very great distance[234 - “To communicate anything to one’s friends by means of a tube. This can be done with a tube made of earthenware, though one of lead is better, or of any other substance, but very close, that the voice may not be weakened; for whatever you speak at the one end, the words issue perfect and entire as from the mouth of the speaker, and are conveyed to the ears of the other, which, in my opinion, may be done for some miles. The voice, neither broken nor dispersed, is carried entire to the greatest distance. We tried it at the distance of two hundred paces, not having convenience for a greater, and the words were heard as clearly and distinctly as if they had come from the mouth of the speaker.” – Lib. xvi. c. 12.]; an experiment which he himself made at the distance of two hundred paces. Schwenter, who wrote before the speaking-trumpet was known, proposes, from the hint of Porta, an ear-trumpet, one end of which should be applied to the ear[235 - Mathematische Erquickstunden, i. p. 243.].

Sir Samuel Morland, an Englishman, and the jesuit Kircher, have in later times contended respecting the invention of the speaking-trumpet. The former, in 1671, published a particular description of one, after he had made many experiments upon it the year preceding. This instrument, shaped like a wide-mouthed trumpet, he caused first to be constructed of glass, and afterwards of copper, with various alterations, and performed several experiments with it in presence of the king (Charles II.), prince Rupert, and other persons, who were astonished at its effects[236 - An Account of the Speaking-trumpet, as it hath been contrived and published by Sir Samuel Morland, knight and baronet, together with its use both at sea and land. London, 1671. An extract from it may be seen in the Phil. Trans., No. 78, p. 3056.].

As an account of this discovery was soon spread all over Europe, Kircher asserted that he had constructed speaking-trumpets before Sir Samuel Morland, and supported his assertion by referring to his former writings, and by the testimony of other authors. I shall first take notice of the former. His Ars Magna Lucis et Umbræ was first printed in 1643. I at least conclude so, because, in the preface to his Phonurgia, printed in 1673, he says that work had been published thirty years before. The second edition is of 1671, in which I find only the already-quoted passage respecting Alexander’s horn, and the figure of a tube, which, like that proposed by Bettini, should be applied to the ear of a person who hears, and to the mouth of the speaker. The Musurgia, printed in 1650, contains better grounds for supporting the assertion of Kircher. In the second part he describes how a funnel can be placed in a building in such a manner, that a person in an apartment where the narrow end is introduced can hear what is spoken without the building, or in another apartment, where the wide end may be. To this description a figure is added, and the author acknowledges he was led to that idea by the construction of a well-known building of Dionysius[237 - Among the antiquities of Syracuse in Sicily, one beholds with wonder chambers and galleries which are hewn out in the solid rock, and particularly a grotto, from which arises a winding passage, that becomes upwards still narrower. Ancient tradition says that this was a prison, which the celebrated tyrant Dionysius caused to be built for state prisoners, that in an apartment of his palace, which stood over the narrow end of the passage, he might hear everything the prisoners said, or what plots they formed against him. This grotto therefore is called Orechio di Dionysio, or la grotta della favella; auris Dionysii, the ear of Dionysius. Many travellers and others formerly imagined that this passage was an ingenious imitation of that part of the human ear called the helix, which was first remarked by Alcmaon the Pythagorean. This is the account given by Kircher, who was there in the year 1638. See his Phonurgia (published 1673), p. 82, where there is a figure of it. In later times, however, this grotto has been examined with more skill and acuteness by people less subject to prejudice, and since that period the supposed wonder has been lessened. The rock consists of limestone, at least I conclude so from what is said by Brydone, who found it everywhere full of cracks and fissures. The stones of which Syracuse was built were hewn from the rock; and hence have been formed these chambers or openings, like those found in the neighbourhood of other ancient and modern cities, such as Rome, Naples, and Maestricht. Many of these, in the course of time, have been employed as prisons, or used as burying-vaults. The above-mentioned passage, which has excited so much wonder, is not properly spiral, and is of such a figure that it may have been produced either by accident or through the whim of the workmen employed to hew out the stones. The double echo which Kircher assures us he heard in the grotto was not remarked by Schott, who was there in 1646, as he expressly says, in opposition to his brother jesuit, in his Magia Naturalis. In the accounts still remaining of Dionysius we find mention of an astonishing prison, which is well described by Cicero in his fifth oration against Verres: “You have all heard of,” says he, “and most of you know the prison (lautumias) of Syracuse. It is an immense and magnificent work, executed by kings and tyrants; the whole is sunk to a wonderful depth in the rock, and has been entirely cut out by the labour of many hands. No place so secured against an escape; no place so enclosed on all sides; no place so safe for confining prisoners can be either planned out or constructed.” But it cannot be proved, and according to D’Orville’s opinion it is improbable, that this grotto was the work of that tyrant, who, as Plutarch tells us in his Life of Dion, employed very different means to learn the intention of dangerous persons. “The common people attacked the tyrant’s friends, and seized those whom they called his emissaries (προσαγώγιδας), worthless men, detested by the gods. These went about the city, mixed with the citizens, and, prying into everything, gave an account to the tyrant of what they thought and what expressions they made use of.” It was merely for its strength, and the labour employed in building it, and not on account of its ingenious construction, that the ancients admired the prison of the tyrant. At present the upper end of the winding passage is closed up; and it is so narrow, that some years ago the captain of an English vessel found great difficulty to clamber up it. It cannot, however, be denied that this grotto may have been used for the service ascribed to it; and I can readily believe that it may have led Kircher to the invention of the ear-trumpet. See the Travels of P. de la Valle, Ray, and Brydone; Delle antiche Siracuse, da G. Bonanni, &c., 2 vols. fol. Palermo 1717. Dan. Bartolo del suono e de’ tremori harmonici, Bonon. 1680, who examined this grotto as a naturalist. D’Orville, Sicula. Amst. 1764, pp. 182, 194.]. He does not however say expressly that he had ever tried the experiment; but in the last page of the preface to the Phonurgia, he pretends that so early as the year 1649 he had caused such a machine to be fixed up in the Jesuits’ college. But, supposing this to be true, it can only be said that he then approached very near to the invention of the speaking-trumpet, by an instrument, which, in reality, however, was calculated to strengthen the hearing, and not the voice; and therefore only the half is true of what he advanced in his preface in 1673, that twenty years before he had described in his Musurgia the trumpet invented in England.

In the Phonurgia, however, written after Morland’s publication was everywhere known, Kircher certainly treats of the speaking-trumpet, and says that, from the similarity of the progress of sound to that of the rays of light, he was led to the idea of conveying the former, in the same manner as the latter, to a great distance, by means of an instrument. For this purpose, about twenty-four years before, he had caused to be constructed, in the Jesuits’ college at Rome, an ear-trumpet, through which the porter could communicate anything he had to say to him when he was in his apartment in the upper story. This apparatus attracted the notice of many strangers, who were astonished at its effect. He here represents it as a proper speaking-trumpet, and adds, that it excited much surprise, on account of the uncommon strength which it gave to the voice. For this reason he was very desirous of trying to what distance words could be distinctly conveyed by such a tube; and an opportunity occurred of doing this the same year that he wrote his Phonurgia. From a convent, situated on the top of a mountain, he assembled twelve hundred persons to divine service, at the distance of from two to five Italian miles, and read the Litany through it. Soon after, the emperor caused a tube to be made according to Kircher’s description, by which, without elevating the voice, he could be understood from Ebersdorf to Neugebeu. But though Kircher came so near to the invention of the speaking-trumpet, it does not appear certain by his works that he attempted or constructed it before Sir Samuel Morland. I shall now examine the evidences he adduces in his favour.

The most important of these is Schott, because he published his Magia Naturalis[238 - This machine was invented by Kircher, in imitation of the ear of Dionysius; nor is it a vain and empty speculation, for the machine produces an infallible effect. Kircher caused to be made at Rome, of tin plate, a very large and straight tube, like a funnel, and placed it in an apartment next to his chamber, in such a manner that the large end projected into the garden of the college, and the less entered his chamber. When the porter of the college had occasion to call him to the gate, that he might not be obliged always to go up stairs, or to bawl out, he went to the broad end of the funnel, and communicated what he wished to Kircher. – Schotti Magia Universalis, ii. p. 156.] in 1657, before the invention of Sir Samuel Morland. All that is to be found in this work, however, relates alone to the ear-trumpet, a figure of which is added from the Musurgia; but we learn, with certainty, that Kircher then had the before-mentioned funnel or tube in his apartment. It is also not improbable that he had tried to answer the porter from his apartment, and that he had thereby remarked that the voice was strengthened; for it is not proved by Schott that he at that time was acquainted with and had in his possession a portable speaking-trumpet.

Another author by whom Kircher endeavours to support his claim is Harsdorfer; who, however, speaks only of tubes to be closely applied to the mouth and to the ear, and who refers to the Musurgia, without mentioning the real speaking-trumpet, though the second part of his Mathematical Recreations was first printed in 1677, and the third in 1692. Besides these testimonies, Kircher quotes also Eschinard concerning sound[239 - Eschinardi Discursus de Sono Pneumatico, p. 10.]. With that work I am not acquainted; but as the information it contains is taken from the Musurgia, it is of as little importance as that of Derham[240 - Physico-theology.], who refuses the invention to his countryman, and gives it to Kircher. When I unite all the evidence in favour of Kircher, it appears to be certain that he made known and employed the ear-trumpet earlier than the portable speaking-trumpet; that he, however, approached very near to the invention of the latter, but did not cause one to be constructed before Sir Samuel Morland, to whom the honour belongs of having first brought it to that state as to be of real use. Such, at least, is the manner in which this dispute is decided by the Jesuit De Lanis[241 - Our Kircher, in his Phonurgia, justly claims that invention, as it was several years ago exhibited by him in the Jesuits’ college at Rome, and an account of it printed. That this is true I myself was an eye-witness; though I must acknowledge that no one before the above-mentioned Englishman ever applied this speaking instrument, at least in so perfect a manner, to that use for which it was afterwards employed. – Magisterium Naturæ et Artis. Brixiæ, 1684–92, fol. ii. p. 436.].

When Morland’s invention was made known in France, it was pretended that Salar, an Augustine monk, had seven or eight years before caused such tubes or trumpets to be made, in order to strengthen the voice of a weak bass-singer; but he himself acknowledges that he never had an idea of speaking with them at a distance[242 - Journal des Sçavans, tome iii.].

This instrument was soon made for sale at Nuremberg in Germany, particularly by that well-known artist Grundler, mentioned by Becher, who imagined that two persons, by means of a speaking-trumpet and an ear-trumpet, could converse together at a great distance, without any one in the neighbourhood, or in the intermediate space, hearing what they said.

Of those who employed their ingenuity in improving this instrument I shall mention the following. Cassegrain, known on account of his optical instruments, published some hints for that purpose in 1672[243 - Ibid. p. 131.]; as did Sturm[244 - J. A. Sturm, Collegium Experimentale, ii. p. 146.], Conyers[245 - Philosophical Transactions.], Hase and others afterwards. The last who investigated the theory of the speaking-trumpet was Lambert[246 - Mémoires de l’Acad. des Sciences à Berlin, 1763, p. 97.]; according to whose ideas the figure of a shortened cone, if not the best, is at least as good as any other that might be employed.

[It would appear, however, from the experiments of Hassenfratz (Journ. de Phys., t. xxvi.) that neither the shape of the instrument nor the material of which it is composed is of much consequence. He ascertained the power of the trumpet by fixing a small watch in the mouth-piece, and observing the distance at which the beats ceased to be audible, and thus found that the effects were precisely the same with a trumpet of tinned iron, whether used in its naked form, or tightly bound round with linen to prevent vibration, or when lined with woollen cloth whereby reflexion was entirely prevented; he also found that the range of a cylindrical trumpet was as great as that of a conical one.

Leslie supposes the effect of the trumpet to be owing to the more condensed and vigorous impulsion given to the air from its lateral flow being checked. He observes, “that the tube, by its length and narrowness, detains the efflux of air, and has the same effect as if it diminished the volubility of that fluid, or increased its density. The organs of articulation strike with concentrated force, and the pulses, so vigorously thus excited, are, from the reflected form of the aperture, finally enabled to escape and to spread themselves along the atmosphere[247 - Experimental Inquiry into the Nature, &c. of Heat, p. 225.].”]

ANANAS. – PINE-APPLE

<< 1 2 3 4 5 6 7 8 9 ... 88 >>
На страницу:
5 из 88

Другие электронные книги автора Johann Beckmann