Should he fail in his cast, the Retiarius drew back his net by the central cord, and took to flight, followed by the Secutor, who tried to wound him before he could re-fold his net upon his shoulder, ready for another cast. It is worthy of notice that in these singular combats the netsman seems generally to have been the victor. A Retiarius with his net is shown in the illustration.
I may mention that our ordinary bird-catchers’ nets, and even the entomologist’s insect-net, are only modifications of the Casting-net.
Now for Nature’s Casting-nets, two examples of which are figured, though there are many more. These two have been selected because they are familiar to all naturalists.
The first is the Argus Star-fish, Basket-urchin, or Sea-basket. The innumerable rays and their subdivisions, amounting to some eighty thousand in number, act as the meshes of the net. All the rays are flexible and under control. When the creature wishes to catch any animal for prey, it throws its tentacles over it, just like the meshes of a net. It then draws the tips of the rays together, just as is done by the circumference of the casting-net, and so encloses its prey effectually.
The next specimen is the net-like apparatus of the common Acorn Barnacles, with which our marine rocks are nearly covered. These curious beings belong to the Crustacea, and the apparatus which is figured on page 89 (#x6_x_6_i60), and popularly called the “fan,” is, in fact, a combination of the legs and their appendages of bristles, &c. When the creature is living and covered with water, the fan is thrust out of the top of the shell, expanded as far as possible, swept through the water, closed, and then drawn back again. With these natural casting-nets the Barnacles feed themselves, for, being fixed to the rock, they could not in any other way supply themselves with food. There are many similar examples in Nature, but these will suffice.
The Rod and Line
That both terrestrial and aquatic nets should have their parallels in Nature is clear enough to all who have ever seen a spider’s web, or watched the “fan” of the barnacle. But that the rod and baited line, as well as the net, should have existed in Nature long before man came on earth, is not so well known. Yet, as we shall presently see, not only is the bait represented in Nature, but even our inventions for “playing” a powerful fish are actually surpassed.
We will begin with the Bait.
In nearly all traps a bait of some kind is required, in order to attract the prey, and when we come from land to attract the dwellers in water to our hooks, it is needful that bait of some kind should be used, were it only to deceive the eye, though not the nostrils or palate, of the fish.
A notable example of the deception is given in the common artificial baits of the present day, which are made to imitate almost any British insect which a fish might be disposed to eat.
Perhaps the best instance of this deception is that which is practised by sundry Polynesian tribes. They have seen that the Coryphene or Dorado, and other similar fish, are in the habit of preying upon the flying-fish, and springing at them when they are tolerably high in the air. So these ingenious semi-savages dress up a hook made of bone, ormer-shell, and other materials, making the body of it into a rudely designed form of a fish. A hole is bored transversely through it at the shoulders, and a bunch of stiff fibres is inserted to represent the wings. Another bunch does duty for the tail.
The imitation bait being thus complete, it is hung to a long and slender bamboo rod, which projects well beyond the stern of a canoe, and is so arranged that the hook is about two feet or so from the surface. The Coryphene, seeing this object skimming along, takes it for a flying-fish, leaps at it, and is caught by the hook. There are in several collections specimens of these ingenious hooks, and I possess one which is made on similar principles, but intended for use in the water, and not in the air. It is, in fact, a “spoon-bait.”
One point of ingenuity must be mentioned, as it really belongs to the principle of the bait. These same savages, having noticed that large sea-birds are in the habit of hovering over the flying-fish, and would probably be seen by the Coryphenes, rig up a very long bamboo rod, tie to its end a large bundle of leaves and fibres, and then fix it in the stern of the boat, the sham bird being hung some twenty feet above the sham fish. There is a refinement of deception here, for which we should scarcely give such savages their due credit.
In Art, then, we bait our hooks either with real or false food, and so attract the fish.
In Nature we have a most accomplished master of the art of baiting, who has the wonderful power of never needing a renewal of his bait. A glance at the left-hand figure of the next illustration will show that I allude to the Angler-fish, sometimes called the Fishing-frog (Lophius piscatorius). This remarkable creature has a most enormous mouth, and comparatively small body. On the top of its head are some curious bones, set just like a ring and staple, so as to move freely in every direction. A figure of this piece of mechanism will be given in a future page. At the end of these bones are little fleshy appendages, which must be very tempting to most fish, which are always looking out for something to eat. As they are being waved about, they look as if they were alive. The fish darts at the supposed morsel, and is at once engulfed in the huge jaws of the Angler-fish, which, but for this remarkable apparatus, would be scarcely able to support existence, as it is but a sluggish swimmer, and yet needs a large supply of food. The illustration, representing on the right hand a fish attracted to a bait, and on the left, the Angler-fish, with its bait-like appendage to the head, speaks for itself.
Passing to the art of Angling with a rod and line, we now arrive at another development.
Supposing a fish to have taken the bait, and to have been firmly hooked, how is it to be landed? The simplest plan is, of course, to have a very thick and strong line which will not break with the weight of any ordinary fish.
This is very well in sea-fishing, where a line made of whip-cord will answer the purpose in most cases. But, in river fishing, we have the fact that the fish are so shy that a linen thread would scare them, and so strong and active, that even whip-cord would not prevent them from breaking the line, or tearing the hook out of their mouths. So the modern angler sets himself to the task of combating both these conditions. In the first place, he makes the last yard or two of his line of “silkworm-gut”—a curious substance made from the silk-vessels of silkworms, and nearly invisible in the water. In the next place, he has a very elastic rod; and, in the third, he has forty or more yards of line, though perhaps only twenty feet are in actual use until the fish is hooked. The remainder of the line is wound upon a winch fixed to the handle of the rod. Thus, when a powerful fish is hooked and tries to escape, the line is gradually let loose, so as to yield to its efforts. When it becomes tired by the gradual strain, the line is again wound in, and in this way a fish which would at the first effort smash rod and line of a novice will, in the hands of an experienced fisherman, be landed as surely as if it were no bigger than a gudgeon.
Nature has in this case also anticipated Art, and surpassed all her powers.
There is a wonderful worm, common on our southern coasts, and bearing, as far as I know, no popular name. It is known to the scientific world as Nemertes Borlasii. It possesses the power of extension and contraction more than any known creature, and uses those powers for the purpose of capturing prey. The fishermen say that this worm can extend itself to a length of ninety feet, and as Mr. Davis found one to measure twenty-two feet, after being immersed in spirits of wine, it is likely that their account may be true, especially as the spirit greatly contracted the animal in point of length.
A most vivid description of this worm is given by C. Kingsley, in his “Glaucus,” and was written before he knew its name.
“Whether we were intruding or not, in turning this stone, we must pay a fine for having done so; for there lies an animal as foul and monstrous to the eye as ‘hydra, gorgon, or chimæra dire,’ and yet so wondrously fitted to its work that we must needs endure for our own instruction to handle and to look at it. Its name I know not (though it lurks here under every stone), and should be glad to know. It seems some very ‘low’ Ascarid or Planarian worm.
“You see it? That black, shiny, knotted lump among the gravel, small enough to be taken up in a dessert spoon. Look now, as it is raised and its coils drawn out. Three feet, six, nine at least; with a capability of seemingly endless expansion; a slimy tape of living caoutchouc, some eighth of an inch in diameter, a dark chocolate black, with paler longitudinal lines.
“Is it alive? It hangs helpless and motionless, a mere velvet string, across the hand. Ask the neighbouring Annelids and the fry of the rock-fishes, or put it into a vase at home, and see. It lies motionless, trailing itself among the gravel; you cannot tell where it begins or ends; it may be a dead strip of seaweed, Himanthalia lorea, perhaps, or Chorda filum, or even a tarred string.
“So thinks the little fish who plays over and over it, till he touches at last what is too surely a head. In an instant a bell-shaped sucker mouth has fastened to his side. In another instant, from one lip, a concave double proboscis, just like a tapir’s (another instance of the repetition of forms), has clasped him like a finger; and now begins the struggle: but in vain. He is being ‘played’ with such a fishing-line as the skill of a Wilson or a Stoddart never could invent; a living line, with elasticity beyond that of the most delicate fly-rod, which follows every lunge, shortening and lengthening, slipping and twining round every piece of gravel and stem of seaweed, with a tiring drag such as no Highland wrist or step could ever bring to bear on salmon or on trout.
“The victim is tired now; and slowly, and yet dexterously, his blind assailant is feeling and shifting along his side, till he reaches one end of him; and then the black lips expand, and slowly and surely the curved finger begins packing him end foremost down into the gullet, where he sinks, inch by inch, till the swelling which marks his place is lost among the coils, and he is probably macerated to a pulp long before he has reached the opposite extremity of his cave of doom.
“Once safe down, the black murderer slowly contracts again into a knotted heap, and lies, like a boa with a stag inside him, motionless and blest.”
The accuracy as well as the pictorial effect of this description cannot be surpassed. The “velvety” feel of the creature is most wonderful, as it slips and slides over and among the fingers, and makes the task of gathering it together appear quite hopeless.
This astonishing worm is drawn on the left hand of the illustration on page 93 (#x6_x_6_i85), so as to show the way in which the body is contracted or relaxed at will. On the other side of the illustration is an angler, armed with all the paraphernalia of his craft, and doing imperfectly that which the Nemertes does with absolute perfection.
A similar property belongs to the long, trailing tentacles of the Cydippe, which is described and figured on page 16 (#x3_x_3_i19). When they come in contact with suitable prey, all struggle is useless, the tentacles contracting or elongating to suit the circumstances, and at last lodging the prey within the body of the Cydippe.
The Spring-trap
We are all familiar with the common Spring-trap, or Gin, as it is sometimes called.
It varies much in form and size, sometimes being square and sometimes round; sometimes small enough to be used as a rat-trap, and sometimes large enough to catch and hold human beings, in which case it was known by the name of man-trap. This latter form is now as illegal as the spring-gun, and though the advertisement “Man-traps and Spring-guns are set in these grounds” is still to be seen, neither one nor the other can be there.
They are all constructed on the same principle, namely, a couple of toothed jaws which are driven together by a spring, when the spring is not controlled by a catch. They are evidently borrowed from actual jaws, the same words being used to signify the movable portions and notches of the trap as are employed to designate the corresponding parts in the real jaw.
In both figures of the accompanying illustration we shall see how exact is the parallel. On the right hand is a common rat-trap, or gin, such as is sold for eightpence, with the jaws wide open, so as to show the teeth. On the left is a sketch of the upper and lower jaws of the Dolphin, in which an exactly analogous structure is to be seen.
The figure on the right hand of the lower illustration shows a man-trap as it appears when closed, the teeth interlocking so as exactly to fit between each other. The same principle is exhibited in the jaws of the Porpoise, which are seen on the left of the illustration. The jaws of an Alligator or Crocodile would have answered the purpose quite as well, inasmuch as their teeth interlock in a similar fashion, but I thought that it would be better to give as examples the jaws of allied animals. The reason for this interlocking is evident. All these creatures feed principally on fish, and this mode of constructing the jaws enables them to secure their prey when once seized.
Another example of such teeth is to be found in the fore-legs of various species of Phasma and Mantis, as may be seen by reference to the illustration. The latter insects are wonderfully fierce and pugnacious, fighting with each other on the least provocation, and feeding mostly on other insects, which they secure in their deeply-toothed fore-legs. They use these legs with wonderful force and rapidity, and it is said that a pair of these insects fighting remind the observer of a duel with sabres.
The Baited Trap
Our space being valuable, we are not able to give many examples of Baited Traps, whether in Art or Nature.
The most familiar example of this trap is the common Mouse-trap, the most ordinary form of which is shown at the right hand of the illustration on page 96 (#x6_x_6_i104). In all the varieties of these traps, whether for mice or rats, the prey is induced to enter by means of some tempting food, and then is secured or killed by the action of the trap. Sometimes these traps are made of considerable size for catching large game, and in Africa are employed in the capture of the leopard, in India for taking both tigers and leopards, and in North America for killing bears.
We have already noticed one instance of a bait in the Angler-fish, described in page 92, but in this case the bait serves only for attraction, and the trap, or mouth, is not acted upon by the prey.
There are, however, many examples in the botanical world, where the plant is directly acted upon by the creature which is to be entrapped, such being known by the now familiar term “Carnivorous Plants.” Of these there is a great variety, but under this head I only figure two of them.
The plant on the right hand is the Venus Fly-trap (Dionea muscipula), which is common in the Carolinas. The leaves of this plant are singularly irritable, and when a fly or other insect alights on the open leaf, it seems to touch a sort of spring, and the two sides of the leaf suddenly collapse and hold the insect in their grasp. The strange point about it is, that not only is the insect caught, but is held until it is quite digested, the process being almost exactly the same as if it had been placed in the stomach of some insect-eating animal.
So carnivorous, indeed, is the Dionea, that plants have been fed with chopped meat laid on the leaves, and have thriven wonderfully. Experiments have been tried with other substances, but the Dionea would have nothing to do with them. The natural irritability of the leaves caused them to contract, but they soon opened and rejected the spurious food.
On the left is the Cephalotus. This plant, instead of catching the insect by the folding of the leaf, secures it by means of a sort of trap-door at the upper end. The insect is attracted by the moisture in the cup, and, as soon as it enters, the trap-door shuts upon it, and confines it until it is digested, when the door opens in readiness to admit more prey.
Birdlime
By a natural transition we pass to those traps which secure their prey by means of adhesive substances.
With us, the material called “birdlime” is usually employed. This is obtained from the bark of the holly, and is of the most singular tenacity. An inexperienced person who touches birdlime is sure to repent it. The horrid stuff clings to the fingers, and the more attempts are made to clear them, the more points of attachment are formed. The novice ought to have dipped his hands in water before he touched the birdlime, and then he might have manipulated it with impunity.
The most familiar mode of using the birdlime is by “pegging” for chaffinches.
In the spring, when the male birds are all in anxious rivalry to find mates, or, having found them, to defend them, the “peggers” go into the fields armed with a pot of birdlime and a stuffed chaffinch set on a peg of wood. At one end of this peg is a sharp iron spike. They also have a “call-bird,” i.e. a chaffinch which has been trained to sing at a given signal.