When the “peggers” hear a chaffinch which is worth taking, they feel as sure of him as if he were in their cage. They take the peg, and stick it into the nearest tree-trunk. Round the decoy they place half-a-dozen twigs which have been smeared with birdlime, and arrange them so that no bird flying at the decoy can avoid touching one of them.
The next point is, to order the call-bird to sing. His song is taken as a personal insult by the chaffinch, which is always madly jealous at this time of year. Seeing the stuffed bird, he takes it for a rival, dashes at it, and touches one of the twigs. It is all over with him, for the more he struggles and flutters, the tighter is he bound by the tenacious cords of the birdlime, and is easily picked up by the “pegger.”
Even the fierce and powerful tiger is taken with this simple, but terrible means of destruction. It is always known by what path a tiger will pass, and upon this path the native hunter lays a number of leaves smeared with birdlime. The tiger treads on one of them, and, cat-like, shakes his paw to rid himself of it. Finding that it will not come off, he rubs his paw on his head, transferring the leaf and lime to his face.
By this time he is in the middle of the leaves, and works himself into a paroxysm of rage and terror, finishing by blinding himself with the leaves that he has rubbed upon his head. The hunters allow him to exhaust his strength by his struggles, and then kill him, or, if possible, capture him alive.
Both these scenes are represented on the right hand of the illustration.
On the left hand are several examples of natural birdlime, if we may use the term. The upper represents the Ant-bear, or Great Ant-eater. This animal feeds in a very curious manner. It goes to an ant-hill, and tears it open with its powerful claws. The ants, of course, rush about in wild confusion. Now, the Ant-eater is provided with a long, cylindrical tongue, which looks very like a huge earth-worm, and which is covered with a tenacious slimy secretion. As the ants run to and fro, they adhere to the tongue, and are swept into the mouth of their destroyer.
Below the Ant-eater is the common Drosera, or Sundew, one of our British carnivorous plants. It captures insects, just as has been narrated of the Dionea. But, instead of the leaf closing upon the insect, it arrests its prey by means of little globules of viscous fluid, which exude from the tips of the hairs with which the surface of the leaf is covered. As soon as the insect touches the hairs, they close over it, bind it down, and keep it there until it is digested. Several species of Drosera are known in England, and are found in wet and marshy places.
Another plant, the Green-winged Meadow Orchis (Orchis morio), has been known to act the part of the Drosera. A fly had contrived to push its head against the viscous fluid of the stigmatic surface, and, not being able to extricate itself, was found sticking there.
Next comes a portion of the web of the common Garden Spider (Epeira diadema). We have already treated of this web as a net, and we will now see how it comes within the present category.
In the web of the spider there are at least two distinct kinds of threads. Those which radiate from the centre to the circumference are strong and smooth, while those which unite them are much slighter, and are covered with tiny globules set at regular intervals. When the web is newly spun, these globules are found to be nearly as tenacious as birdlime, and it is by these means that an insect which falls into the web is arrested, and cannot extricate itself until the spider can seize it. After awhile the globules become dry, refuse to perform their office, and then the spider has to construct another web. So numerous are these globules that, according to Mr. Blackwall’s calculations, an ordinary net contains between eighty and ninety thousand. Below the figure of the web itself are shown the two kinds of thread, the upper bearing the globules, and the lower representing one of the plain radiating threads.
CHAPTER V
Reverted Spikes and their Modifications.—The Wire Mouse-trap.—George III. and the Trap.—Fate of a Royal Finger.—The Crab and Lobster Pot.—The Eel-pot.—Cocoon of the Emperor-moth and its Structure.—“Catchpoll” of the Middle Ages.—Deer-trap of India.—Jaws of Pike and Serpent.—The Grass-snake.—Jaws of Shark and their Power.—Spiked Defences.—The Park Fence, the Garden Wall, and the Chevaux-de-frise.—The “Square” of Infantry Manœuvres.—The Abattis, and its Structure and Power.—Ranjows and Caltrops.—Ancient Ranjows in Ireland.—Hedgehog.—Porcupine Echidna.—House-builder Caterpillar and its Home.—Repagula of Ascalaphus.—Tearing Weapons.—The “Wag-nuk” of India.—Armed Gauntlet of the Middle Ages.—Shark-tooth Gauntlet of Samoa, and the Uses to which it was put.—A terrible Warrior.—The Tiger’s Claw.—Sport and Earnest.
Reverted Spikes
I am not quite satisfied with this title, but it is the best that I can find. By it I mean that mode of mechanism which, by means of an array of sharp spikes, permits an animal to enter a passage easily, and yet prevents it from emerging.
Whether or not this principle be now employed in warfare I cannot say, but it is at all events used extensively in a small way of hunting, the best known of which is the wire Mouse-trap, one of which is shown at Fig. C on the illustration. A glance at the figure will explain the trap, even to those who have never seen it. It is composed entirely of wire, and has several round holes just above its lower edge. Each of these holes is the entrance to a conical tunnel made of wires with sharpened ends.
The mouse, being attracted by a bait placed within the trap, tries to get at it. The doomed animal soon finds its way to one of the entrances, and with little difficulty pushes itself through the tunnel. Entering, however, is one thing, and returning is another. The wire yielded easily enough in one direction, but for the mouse to force itself against the converging points is an impossible task.
Readers of the last century literature may perhaps remember, in the pages of “Peter Pindar,” a very clever and sarcastic account of the astonishment created in the mind of George III. by a mouse-trap seen accidentally in the house of a widow living at Salt Hill.
“Eager did Solomon, so curious, clap
His rare round optics on the widow’s trap,
That did the duty of a cat.
And, always fond of useful information,
Thus wisely spoke he with vociferation,—
‘What’s that? what? what? Hæ, hæ? what’s that?’
To whom replied the mistress of the house,
‘A trap, an’t please you, sir, to catch a mouse.’
‘Mouse—catch a mouse!’ said Solomon with glee;
‘Let’s see, let’s see—’tis comical—let’s see—
Mouse! mouse!’—then pleased his eyes began to roll—
‘Where, where doth he go in?’ he marvelling cried.
‘There,’ pointing to the hole, the dame replied.
‘What! here?’ cried Solomon, ‘this hole? this hole?’
Then in he pushed his finger ’midst the wire,
That with such pains that finger did inspire,
He wished it out again with all his soul.”
For my part I think that the King was quite right. If he did not know the philosophy of a mouse-trap he ought to have asked, and to have been rewarded, as in that case, by catching with a trap of his own baiting, six mice on six successive days.
At Fig. B on the same illustration is shown the simple apparatus by which crabs and lobsters are caught. The reader will see that the principle is exactly the same in both cases, the only difference being in material, the mouse-trap being made of wire, and the crab-pot of wicker.
At Fig. D is shown the common Eel-pot, or Eel-basket. In order to suit the peculiar shape of an eel, this basket is much longer in proportion to its diameter than either of the preceding traps, but it is formed on the same plan. An eel can easily pass into the basket through the conical tunnel, but it is next to impossible that it should find its way out again.
So much for Art, and now for Nature.
On the left hand of the illustration, at Fig. A, is the cocoon of the common Emperor-moth (Saturnia pavonia minor), the cocoon having been stripped of its outer envelope, so as to allow its structure to be better seen.
The reader will at once perceive that the entrance of the cocoon is guarded by an arrangement exactly like that of the above-mentioned traps, except that the cone is reversed, so as to allow of exit and to debar entrance. Guarded by this conical arrangement of stout bristly appendages, the pupa can remain in quiet during the time of its transformation, for nothing can force its way through such a defence, and yet the moth, when fully developed, can push its way out with perfect ease.
So admirably is this cocoon formed, that even after the moth has escaped, it is impossible to tell by mere sight whether or not it is within, the elastic wires closing on it after its passage.
Another modification of the same principle now comes before us. In the above-mentioned examples the arrangement of the reverted spikes is more or less conical, and they lead into a chamber. In the present instances, however, the mere reversion of the points is all that is needed.
The upper figure on the right hand represents the “Catchpoll” of the Middle Ages, an allusion to which has already been made. The reverted spikes turn on hinges, and are kept apart by springs. This beautifully formed head was attached to a long shaft, and was used for the purpose of dragging horsemen from the saddle. It was thrust at the neck of the rider, generally from behind. If a successful thrust were made, the spring-points gave way, sprang back again, and thus clasped the neck with a hold that was fatal to the rider.
Below it is the Deer-trap which is used in many parts of India, and to which allusion has already been made. The reader will see at once that if a deer should get its foot through the converging spikes, its doom is sealed, especially as there is a heavy log of wood attached to the trap by a rope.
On the left hand of the illustration are two examples of the same principle taken from Nature, one belonging to fresh and the other to salt water.
The upper figure represents the jaws of a Pike, with their terrible array of reverted teeth. The Pike, as every one knows, feeds upon other fish, and eats them in a curious manner. It darts at them furiously, and generally catches them in the middle of the body. After holding them for a time, for the purpose, as I imagine, of disabling them, it loosens its hold, makes another snap, seizes the fish by the head, and swallows it.
The Pike is so voracious that it will attack and eat fish not very much smaller than itself, for its digestion is so rapid that the head and shoulders of a swallowed fish have been found to be half digested, while the tail was sticking out of the Pike’s mouth. Unless, therefore, the teeth of the Pike were so formed as to resist any retrograde movement on the part of the prey, the fish would starve; for, lank and lean as it is, the Pike is one of the most voracious creatures in existence, never seeming able to get enough to eat, and yet, as is often found in such cases, capable of sustaining a lengthened fast.
How well adapted is this arrangement of teeth for preventing the escape of prey, any one can tell who, in his early days of angling, caught a Pike, and, after killing it, tried to extract the hook without previously propping the jaws open. If once the hand be inserted between the jaws, to get it out again is almost impossible without assistance, and often has the spectacle been exhibited of a youthful angler returning disconsolately home, with his right hand in the mouth of a Pike, and supporting the weight of the fish with his left.
The teeth of a serpent are set in a similar manner, as can be seen by reference to the illustration on page 80 (#x6_x_6_i11). An admirable example of the power of this arrangement may be seen in the jaws of our common Grass or Ringed Snake (Coluber natrix). The teeth are quite small, very short, and not thicker than fine needle-points. Yet, when once the snake has seized one of the hind-feet of a frog, all efforts to escape on the part of the latter are useless. The lower jaw is pushed forward, and then retracted, and at each movement the leg is drawn further into the snake’s mouth, until it reaches the junction.
The snake then waits quietly until the frog tries to free itself by pushing with its other foot against the snake’s mouth. That foot is then seized, the leg gradually following its companion, and in this way the whole frog is drawn into the interior of the snake. I have seen many frogs thus eaten, but never knew one to escape after it had been once seized by the snake. As these reptiles are perfectly harmless, it is easy to try the experiment by putting the finger into a snake’s mouth, when it will be found that the assistance of the other hand will be needful in order to extricate it.
Below the head of the pike is a view of a Shark’s jaws, as seen from the front.
Here, again, we have a similar arrangement of teeth, row after row of which lie with their points directed towards the throat of the fish. As, however, the pike and the snake swallow their prey whole, their teeth need be nothing but points. But, as the Shark is obliged to mangle its prey, and seldom swallows it whole, its teeth are formed on a different principle, each tooth being flat, wide, sharply pointed, and having a double edge, each of which cuts like a razor. So knife-like are they, indeed, that when a whale is killed, the sharks which surround it bite off huge mouthfuls of blubber, and, as they swarm by hundreds, cause no small loss to the whalers.
Many a man has lost a leg by a shark, the fish having bitten it completely through, bone and all, and there have been cases where a shark has actually severed a man’s body, going off with one half, and leaving the other clinging to the rope by which he was trying to haul himself on board.
Spiked Defences
This mode of defence is, perhaps, one of the most primitive in existence, and takes a wonderful variety of forms. The spiked railings of our parks and gardens, the broken glass on walls, and even the spiked collars for dogs, are all modifications of this principle.
On the illustrations are several examples of spikes used for military purposes. The first is known by the name of “Chevaux-de-frise,” and is extensively used in forming an extemporised fence where no great strength is needed. The structure is perfectly simple, consisting of a number of iron bars with sharpened ends, and an iron tube some inches in diameter, which is pierced with a double set of holes. When not in use, the bars and tube can be packed in a small compass, but when they are wanted, the bars are thrust through the holes as shown in the illustration, and the fence is completed in a few minutes. The horizontal bars are linked together by chains, so as to prevent them from being shifted, and a defence such as this is generally used for surrounding parks of artillery and the like.
All who have the least acquaintance with military matters must be familiar with the “Square,” and its uses in the days of old. I say in the days of old, because in the present day the rapid development of guns and rifles has entirely destroyed the old arrangement. So lately, for example, as the day of Waterloo, troops might manœuvre in safety when they were more than two hundred yards from the enemy. Now, a regiment that attempted to manœuvre in open ground would be cut to pieces by the rifles of the enemy at a thousand yards’ distance.