Оценить:
 Рейтинг: 4.6

Интерстеллар: наука за кадром

Год написания книги
2014
Теги
<< 1 2 3 4
На страницу:
4 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

Черные дыры же (см. главу 5 (#litres_trial_promo)) целиком и полностью состоят из искривленного пространства и искривленного времени (в главе 4 я поясню это странное утверждение). Таким образом, черная дыра не содержит материи. Однако она имеет поверхность – ее называют «горизонтом событий» или просто «горизонтом», – через которую ничто не способно выйти наружу, даже свет; отсюда и слово «черная» в названии. Диаметр черной дыры пропорционален ее весу[13 - Здесь имеется в виду соотношение между массой черной дыры и ее радиусом Шварцшильда, который характеризует горизонт событий. Прим. науч. ред.]: чем она тяжелее, тем больше.

Если масса черной дыры равна массе типичной нейтронной звезды или белого карлика (скажем, в 1,2 раза тяжелее Солнца), то ее окружность будет равна примерно 22 километрам, что составляет четверть диаметра нейтронной звезды или тысячную часть диаметра белого карлика (см. рис. 2.5).

Рис. 2.5. Белый карлик (слева), нейтронная звезда (посередине) и черная дыра (справа), которые весят в 1,2 раза больше Солнца. Здесь показана лишь малая часть поверхности белого карлика

Поскольку звезды обычно весят не больше 100 Солнц, вес черных дыр, которыми они становятся после смерти, тоже не превышает 100 солнечных масс. Из этого следует, что гигантские черные дыры, которые находятся в ядрах галактик и вес которых составляет от миллиона до 20 миллиардов солнечных масс, не могли образоваться из умирающих звезд. Видимо, они зародились каким-то иным образом – возможно, при объединении множества черных дыр поменьше или в результате схлопывания массивных газовых облаков.

Магнитные, электрические и гравитационные поля

Силовые линии магнитных полей играют большую роль во Вселенной и очень важны для понимания «Интерстеллар», поэтому стоит поговорить о них, прежде чем углубиться в научные аспекты фильма.

Наверное, на уроках физики вам уже приходилось иметь дело с силовыми линиями магнитного поля, когда вы ставили простой, но очень эффектный опыт. Помните, берешь листок бумаги, накрываешь им магнитный брусок и сыпешь сверху железные опилки? Опилки при этом складываются в узор, как на рис. 2.6. Они выстраиваются вдоль силовых линий магнитного поля, которые сами по себе невидимы. Эти линии исходят от одного из полюсов магнита, огибают магнит и достигают другого полюса. Магнитное поле – это совокупность всех магнитных силовых линий.

Рис. 2.6. Силовые линии магнитного поля вокруг магнитного бруска видны благодаря рассыпанным по листу бумаги железным опилкам (Рисунок Мэтта Зимета по моему наброску; из моей книги «Черные дыры и складки времени: дерзкое наследие Эйнштейна» [Торн 2009].)

Если вы возьмете два магнита и поднесете их северными полюсами друг к другу, их силовые линии будут отталкиваться. При этом в пространстве между магнитами вы ничего не увидите, но силу магнитного поля почувствуете. Этот эффект можно использовать для удержания в воздухе намагниченных объектов, каковым может быть даже железнодорожный поезд (рис. 2.7).

Рис. 2.7. Первый в мире коммерческий поезд на магнитной подушке в Шанхае, Китай

У Земли тоже есть два полюса, Северный и Южный. Силовые линии магнитного поля выходят из Южного полюса, огибают Землю и достигают Северного полюса (рис. 2.8). Эти линии воздействуют на стрелку компаса таким же образом, как и на железные опилки: стрелка не успокоится, пока не встанет вдоль линий настолько точно, насколько это возможно. Таков принцип работы компаса.

Рис. 2.8. Силовые линии магнитного поля Земли

Силовые линии магнитного поля Земли можно увидеть, наблюдая полярное (иначе – северное) сияние (рис. 2.9). Силовые линии захватывают летящие от Солнца протоны, и те входят в земную атмосферу. Там протоны сталкиваются с молекулами кислорода и азота, заставляя их флуоресцировать[14 - Механизм верно описан для полярного сияния на Земле. Для других планет наиболее яркие линии в спектре излучения определяются составом атмосферы. Так, для Юпитера наиболее яркой будет линия излучения водорода в ультрафиолетовом спектре. Прим. науч. ред.]. Это свечение и есть полярное сияние.

Рис. 2.9. Полярное сияние над Хаммерфестом, Норвегия

Магнитное поле нейтронных звезд очень мощное. Его силовые линии, так же как и земные, образуют фигуру, напоминающую пончик. Быстро движущиеся частицы, пойманные в магнитное поле нейтронной звезды, подсвечивают его силовые линии (голубые кольца на рис. 2.10). Некоторые частицы освобождаются и отлетают от полюсов, образуя конусообразные струи – джеты[15 - Cреди российских физиков бытует термин «релятивистская струя». Прим. перев.] (на рис. 2.10 показаны фиолетовым). Джеты состоят из самых разных излучений: гамма-лучей, рентгеновских лучей, ультрафиолета, видимого излучения, инфракрасного излучения, а также радиоволн. По мере того как звезда вращается, излучающие джеты движутся по небосводу подобно прожекторам. Каждый раз, когда джет поворачивается в сторону Земли, астрономы наблюдают импульс излучения; из-за периодичности импульсов такие звезды и прозвали пульсарами.

Рис. 2.10. Условное изображение нейтронной звезды с магнитным полем в форме пончика и джетами

Во Вселенной есть и другие поля (совокупности силовых линий) помимо магнитных. Это среди прочих электрические поля (совокупности силовых линий, благодаря которым электрический ток движется по проводам). Еще один пример – гравитационные поля (совокупности силовых линий, которые, в частности, притягивают нас к земной поверхности).

Силовые линии гравитационного поля Земли направлены радиально, к ее центру, и притягивают объекты к Земле. Сила гравитационного притяжения пропорциональна плотности силовых линий (количеству линий, которые проходят через заданную площадь). По мере того как линии приближаются к Земле и проходят через воображаемые сферы все меньшей и меньшей площади (окружности из красного пунктира на рис. 2.11), плотность линий увеличивается обратно пропорционально площади сфер, а следовательно, гравитация возрастает по мере приближения к Земле – обратно пропорционально площади воображаемой сферы. Поскольку площадь каждой сферы пропорциональна квадрату ее удаленности от центра Земли r, сила притяжения Земли возрастает как 1/r2. Это ньютоновский закон обратных квадратов для гравитации – один из фундаментальных законов физики, которыми так страстно увлечен профессор Брэнд и знакомство с которыми – наша следующая веха на пути освоения научных аспектов «Интерстеллар».

Рис. 2.11. Силовые линии гравитационного поля Земли

3. Законы, управляющие Вселенной

Эпоха великих негеографических открытий

С XVII века и по сей день ученые бьются над разгадкой физических законов, которые управляют Вселенной и формируют ее. Это напоминает то, как европейские путешественники-первооткрыватели самоотверженно исследовали земную географию (рис. 3.1).

Мартин Вальдземюллер, 1506

Абрахам Ортелий, 1570

Эмануэль Боуэн, 1744

Рис. 3.1. Карты мира

В 1506 году кругозор картографов ограничивался Евразией и лишь где-то вдалеке брезжили берега Южной Америки. К 1570 году обе Америки были открыты, но никто и не подозревал о существовании Австралии. К 1744 году была открыта и Австралия, но Антарктика оставалась на карте белым пятном.

Подобно этому (рис. 3.2) к 1690 году были открыты ньютоновские законы физики. С помощью таких понятий, как сила, масса и ускорение, а также уравнений, которые их связывают (например, F = ma), законы Ньютона точно описывают движение Луны вокруг Земли и движение Земли вокруг Солнца, полет самолета, распределение нагрузки в конструкции моста и соударение бильярдных шаров, и многие-многие прочие явления. В главе 2 мы уже сталкивались с одним из ньютоновских законов – законом обратных квадратов для гравитации.

Рис. 3.2. Законы физики, управляющие Вселенной

К 1915 году Эйнштейн и другие ученые доказали, что законы Ньютона не работают в случае очень высоких скоростей (для объектов, которые движутся со скоростью, близкой к скорости света), очень больших расстояний (масштаб Вселенной) и в случае высокой гравитации (например, для черных дыр). Чтобы устранить этот недостаток, Эйнштейн сформулировал свою революционную теорию относительности (рис. 3.2). Используя понятия искривленного времени и искривленного пространства (о которых пойдет речь в следующей главе), законы теории относительности предсказали и объяснили такие феномены, как расширение Вселенной, черные дыры, нейтронные звезды и червоточины.

К 1924 году стало ясно, что законы Ньютона не работают также и для сверхмалых размеров (молекулы, атомы и фундаментальные частицы). Чтобы разобраться с этим, Нильс Бор, Вернер Гейзенберг, Эрвин Шрёдингер и другие ученые вывели законы квантовой физики (рис. 3.2). Взяв за основу, что всё вокруг хотя бы в небольшой мере подвержено случайным колебаниям – флуктуациям (об этом в главе 26) и что эти флуктуации могут порождать новые частицы и излучения «из ничего»[16 - Современная наука предполагает, что вакуум представляет собой не полное отсутствие каких-либо объектов (частиц, излучений и т. д.), а сложную структуру, и частицы понимаются как некие возбуждения над вакуумом. Прим. науч. ред.]


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4
На страницу:
4 из 4