Оценить:
 Рейтинг: 0

Применение искусственного интеллекта в цифровой экономике

Год написания книги
2021
Теги
<< 1 2 3 4 5 6 7 8 ... 18 >>
На страницу:
4 из 18
Настройки чтения
Размер шрифта
Высота строк
Поля

Одна из задач исследования заключается в проведении анализа ближайших перспектив развития общества в условиях унификации мировой хозяйственной системы в цифровом ключе, в том числе и возможности применения умных технологий в переработке техногенных и твердых бытовых отходов.

Материалы и методы исследования. Теоретической основой исследования послужили работы отечественных и зарубежных ученых в области применения инновационных технологий и искусственного интеллекта, а также решения экологических проблем защиты окружающей среды. Методологическую основу исследования составили общенаучные методы познания, в частности синтез, сравнительно-аналитический и логический анализ, системный метод. В работе использовались программно-целевой подход, smart-подход, а также гранулометрический анализ воздействия потока на частицы твердой фазы.

Эмпирическая и информационная базы представлены фундаментальными положениями научных исследований, периодических изданий теоретико-экономического профиля, посвященных проблемам защиты окружающей среды и внедрению в повседневность нейронных сетей глубоко обучения.

3.1. Результаты исследования и их обсуждение

По прогнозам социологов и демографов, к 2050 году население нашей планеты может превысить 9,7 млрд человек. В этой связи перед человечеством стоит несколько важных задач. Главная из которых – найти способы прокормить все население Земли. Другая не менее важная задача – найти возможности эффективной борьбы с глобальным потеплением, третья – нахождение способов борьбы с загрязнением окружающей среды и твердыми бытовыми отходами (ТБО).

Первая проблема будет решаться в направлении выращивания растительного белка. Пищевые технологии серьезным образом интересуют сознательных членов общества. Общая цель – исключение животных из пищевой цепочки получения белка. Решение второй связано со снижением выбросов парниковых газов в атмосферу и разработкой технологий по восстановлению лесов, решение третьей базируется на применении искусственного интеллекта для защиты экосистемы планеты и сохранения ресурсов для последующих поколений.

В течение 2020 года в процессе резкого сокращения объемов производства и транспортно-логических операций вследствие распространения новой коронавирусной инфекции человечество столкнулось с феноменом существенного улучшения экологической обстановки на планете. К примеру, за несколько первых месяцев локдаунов объемы выбросов СО

сократились на 25%.

Экологическая среда – это среда прямого взаимодействия человека с различными сферами тем или иным образом, включая гидросферу, атмосферу и почву. Кратко можно обозначить как ареал обитания человека и его взаимодействие с этой внешней средой. В данной среде человек стремится создать наиболее комфортные условия для жизнедеятельности. Следует отметить, что не только человек определяет состояние этой внешней среды обитания, но и сами процессы, которые мы можем наблюдать в этой среде. По нашему мнению, рассматривать проблемы и решать их необходимо на экосистемном уровне.

На сегодняшний день эксперты в сфере умной экологии сходятся во мнении относительно перспективности тех или иных направлений по спасению нашей планеты. Одним из приоритетных направлений развития экосистемы Земли является применение автономных и подключенных автомобилей, причем автомобилей с электрическими двигателями.

До 2030 года ведущие европейские страны, к примеру Великобритания, планируют полностью отказаться от двигателей внутреннего сгорания и дизельных двигателей, полностью заменив имеющийся автомобильный парк на электромобили. Причем такой транспорт будет переведен на новую алгоритмическую модель, позволяющую оптимизировать процесс дорожного движения, минимизировать трафик и, как следствие, существенно снизить выбросы в атмосферу парниковых газов.

Алгоритм уже применяется в тестовом режиме в Японии на базе сервиса, который получил название райдшеринга и представляет собой формирование автоматизированных транспортных колонн.

Другим эффективным направлением является применение компьютерных алгоритмов в распределенных энергосетях. Применение искусственного интеллекта позволяет с высочайшей степенью точности прогнозировать периоды наибольшей нагрузки и адаптировать поставки электроэнергии. Это, в свою очередь, позволит производителям варьировать цены на электроэнергию, а пользователям иметь возможность накапливать электроэнергию с помощью аккумуляторов, распоряжаясь излишками электроэнергии исходя из принципа целесообразности.

Третье направление – это развитие программ умного сельского хозяйства и применение методов производства агрокультур на основе инновационных и информационных технологий (прецизионного сельского хозяйства), использующих беспилотники и искусственный интеллект, позволяющих разработать алгоритмы осуществления всех сельскохозяйственных процессов с максимально возможной точностью. Указанный метод позволяет сокращать расход воды, объемы применяемых удобрений и пестицидов, что влечет за собой повышение производительности сельскохозяйственных работ и улучшение экологической обстановки.

Сегодня искусственный интеллект широко применяется в метеорологии, развивая новую науку – климатическую информатику. Данная сфера динамично развивается ряд последних лет, постепенно заменяя возможности суперкомпьютеров стандартными персональными компьютерами в интеграции с нейросетями на основе глубокого обучения. Климатическая информатика позволит осуществлять точное прогнозирование погоды, различных метеорологических явлений и опасных для человечества природных катаклизмов.

Пятым направлением плана спасения Земли станет система умной ликвидации чрезвычайных ситуаций. Искусственный интеллект и заложенные в него алгоритмы при помощи глубокого обучения и подкрепления учатся предсказывать природные катастрофы, а также оценивать вероятные риски и угрозы, разрабатывать различные наиболее эффективные сценарии их устранения в реальном режиме времени.

Шестым магистральным направлением развития алгоритмов и применения искусственного интеллекта в целях повышения комфортности среды обитания человека и эффективности управления городским хозяйством в рамках реализации концепции Smart City является система «Комфортные подключенные города».

Данная система позволит эффективно зонировать территорию городов, проектировать различного рода защитные сооружения, а также разрабатывать оптимальные планы застройки новых территорий и расселения сложившейся застройки в рамках государственных программ реновации. Искусственный интеллект позволит в реальном режиме времени оценивать расходы электроэнергии, воды и иных ресурсов, а также регулировать транспортные потоки и движение жителей городов.

Следует отметить, что в РФ ежегодно образуется около 60 млн тонн твердых бытовых отходов. По оценкам экспертов, 40–60% всех отходов представляет собой ценное сырье, которое пригодно для дальнейшей переработки[21 - Инновации мусорного сектора: фандоматы, датчики и умная сортировка. РБК. Тренды. [Электронный ресурс]. Режим доступа: https://trends.rbc.ru/trends/green/5ee9dc6c9a7947091ee27961 (дата обращения: 11.03.2021 г.).].

Однако сейчас перерабатывается не более 5%. Оставшиеся твердые бытовые отходы направляются на мусорные полигоны и свалки, сегодня их свыше 32 тыс. штук площадью более 4 млн га. В целях эффективного обращения с твердыми бытовыми отходами и повышения объемов использования вторичного сырья необходимо применение искусственного интеллекта и IT-технологий для автоматизации процессов сбор, накопления, логистики и переработки ТБО.

По мнению специалистов, уже через несколько десятков лет алгоритмы и возможности виртуального моделирования позволят сформировать систему прозрачной цифровой Земли и осуществлять мониторинг всех процессов на планете в глобальных масштабах, включая добычу полезных ископаемых, вырубку лесов, загрязнение окружающей среды, ловлю рыбы и т.п. Кроме того, применение возможностей искусственного интеллекта и машинного обучения позволит осуществить прорывные открытия и развивать технологии в сфере биологии, физики, медицине и пр.[22 - Авельсник Н. ВЭФ: 8 способов спасения планеты с помощью ИИ. [Электронный ресурс]. Режим доступа: https://hightech.fm/2018/01/25/wef_ai (дата обращения: 10.03.2021 г.).]

Включение в человеческую повседневность и деятельность человека возможностей искусственного интеллекта (ИИ) в качестве помощника с дополнительными возможностями и опциями позволит получить основное преимущество такой интеграции – система ИИ позволит не только ускорить процесс принятия решений, но и повысить качество принимаемых решений.

Наряду с явно позитивными последствиями применения искусственного интеллекта экспертным сообществом все чаще высказывается опасение о возможных негативных и непредсказуемых последствиях включения в человеческую жизнедеятельность самообучающихся нейронных сетей. Наблюдается расширение такого нового проявления включения цифровых инновационных технологий в нашу повседневную жизнь, как дизрапт.

Дизрапт – это широкое применение искусственного интеллекта и новых подрывных инноваций, которые способны настолько изменить имеющуюся ситуацию, что старые, применяемые ранее технологии становятся неконкурентоспособными[23 - Смирнов Д. Дизрапт-эпоха: разрыв социальных связей, умные города и конец приватности. [Электронный ресурс]. Режим доступа: https://hightech.fm/202-0/11/09/disrupt (дата обращения: 07.03.2021 г.).].

В перспективе в ближайшие 5–6 лет человечество перейдет к использованию нейронных сетей в концепции Ambient AI. Данная концепция предполагает, что искусственный интеллект на основе изучения и систематизации привычек людей позволит прогнозировать их запросы и предпринять набор действий задолго до проявления этих запросов в обществе.

Иными словами, с помощью искусственного интеллекта будет реализовываться функция предугадывания желаний и стремлений людей и создание для них оптимальной среды обитания. Однако в этом кроется очевидная угроза потери приватности, поскольку каждый оставляет так называемый цифровой след, и игнорировать данный факт невозможно. В итоге человечеству придется искать разумный баланс между личными и общественными интересами.

Кроме того, существует еще одна неминуемая угроза для человека – бурное развитие нейронных сетей и расширение перспектив использования искусственного интеллекта – в течение 10–15 ближайших лет около 70–75% работников рискуют лишиться своих рабочих мест вследствие вытеснения их различного рода ботами и алгоритмами. Это приведет к снижению издержек производства на содержание многочисленного персонала компаний и организаций, к резкому сокращению трудовых ресурсов, занятых в производстве, к постепенному исчезновению привычных нам профессий, крупные торговые центры и магазины в дальнейшем будут перемещаться в интернетпространство.

В первую очередь данный процесс затронет рынки труда, связанные с оказанием посреднических услуг. По прогнозам аналитиков журнала «The economist», к 2024 году около 80% англичан лишатся рабочих мест по причине их замены на производственных роботов.

К значительным проблемам, препятствующим широкому использованию smart-технологий в Российской Федерации, в частности принципов smart-экологии, относятся отсутствие серьезных объемов инвестиций в социальный и человеческий капитал, отставание в социально-экономическом развитии большинства регионов России, отсутствие необходимых финансово-экономических ресурсов, наличие разного рода инфраструктурных проблем, возникновение недобросовестной конкуренции и борьбы компании за свой особый сегмент нового цифрового рынка, выявление проблем взаимодействия частного бизнеса и муниципальных властей, законодательных структур, девелоперов и других специалистов, а также серьезных экологических проблем [63, 108].

Концепция «Умный город» должна стать неотъемлемой частью инновационной стратегии российского государства. Это, в свою очередь, требует разработки, успешной реализации и оценки взаимодействия целого ряда приоритетных инвестиционных проектов, направленных на использование smart-технологий, включая и реализацию проектов в рамках умной экологии. В результате ожидается значительный синергетический эффект во всех сферах жизни города и городской инфраструктуры, включая повышение качества жизни и уровня безопасности граждан, строительство образовательных и социальных центров, решение экологических проблем [102].

Концепция «Умный город» должна стать неотъемлемой частью инновационной стратегии российского государства. Это, в свою очередь, требует разработки, успешной реализации и оценки взаимодействия целого ряда приоритетных инвестиционных проектов, направленных на использование smart-технологий, включая и реализацию проектов в рамках умной экологии. В результате ожидается значительный синергетический эффект во всех сферах жизни города и городской инфраструктуры, включая повышение качества жизни и уровня безопасности граждан, строительство образовательных и социальных центров, решение экологических проблем [102].

Концепция Smart City (Умный Город) – это глобальная автоматизирования система управления городским пространством, основанная на информационном подходе и инновационных технологиях, использовании искусственного интеллекта, новых нанотехнологических материалов, реализации принципов энергосбережения и энергоэффективности, позволяющая развивать инфраструктуру и создать комфортную среду обитания для жителей, повысить эффективность функционирования мегаполиса в целом, значительно улучшить экологическую обстановку, повысить эффективность использования общественного и частного транспорта, спрогнозировать и минимизировать негативные последствия рисковых событий, а также получить значительную экономию ресурсов, которая будет способствовать увеличению инвестиционной привлекательности и общей конкурентоспособности города [89]. В этой связи комбинированные отходы теплоэлектростанций (ТЭС) по своему сложному и многокомпонентному вещественному составу приравниваются к технологическим месторождениям, которые теперь можно перерабатывать с использованием общепринятых методов разделения минералов, позволяющих извлекать ценные компоненты и использовать полученные продукты для нужд народного хозяйства.

Применение в экологических проектах различных видов нейронных сетей в алгоритмах искусственного интеллекта зависит от того, какая цель ставится перед реализацией проекта: обобщение, оптимизация, управление, прогностика, редукция баз данных и т.д. В текущий момент времени в экопроектах применяются, как правило, два распространенных типа нейронных сетей:

1)

многослойная нейронная сеть, в которой каждый нейрон одного слоя связан со всеми нейронами последующего, и каждой такой связи прописан соответствующий вес (вектор весов). Количество входящего и выходящего слоев обусловлено спецификой выбора объекта исследования. Основной принцип обучения заключается в сопоставлении огромного массива статистических данных в целях уменьшения и исправления возможных ошибок за счет корректировки весов (векторов) нейронов;

2)

двухслойная нейронная сеть – это комбинация входящего и выходящего слоев нейронов. Каждый нейрон связан с соседними нейронами. Вес связей соответствует входящим значениям.

В проектах «Smart-экология» современные возможности искусственного интеллекта позволяют осуществлять экологический мониторинг, формировать и хранить гигантские массивы данных, выявлять и анализировать закономерности в состоянии окружающей среды. Следует отметить, что такие массивы данных характеризуются неполными, противоречивыми и не всегда корректными исходными данными. В этой связи указанные закономерности характеризуются нелинейностью, нечеткостью и высоким уровнем неопределенности, что существенно затрудняет оценку экологической обстановки. Поэтому одним из наиболее перспективных направлений использования технологий ИИ в smart-экологии признается распознавание и прогнозирование экологической ситуации на основе алгоритмов нейронных сетей.

Особенно сложно формировать базы данных об аварийных ситуациях, связанных с опасностью выброса в атмосферу отслеживаемых вредных веществ или создание таких экологически неблагоприятных сооружений, как техногенные отвалы, характеризующиеся такими негативными проявлениями, как пылевые выбросы, просадки и оползни, ветровая и водная эрозии, риски самовозгорания.

Следует отметить, что применяемые до сих пор в России способы возведения таких отвалов, занимающих огромные территории, в частности в теплоэнергетике, необходимо срочно пересматривать, изучать и внедрять зарубежную практику переработки содержащих компонентов таких отвалов, позволяющую извлекать и использовать в дальнейшем полезные компоненты. К примеру, из 1 тонны угля, в зависимости от технологического оборудования, условий подготовки топлива и конкретных режимов сжигания образуется от 140 до 25 кг твердой золы [60]. Зольность – это минеральное сырье, богатое оксидом алюминия (15–25%), закисью железа (6–15%) и оксидом кремния (40–60%). Он также содержит в качестве микродобавок 50 элементов периодической таблицы Менделеева [15].

По сложности и многокомпонентности вещественного состава отходы теплоэлектростанций (ТЭС) соответствуют техногенным месторождениям, которые в настоящее время возможно перерабатывать известными обогатительными методами с извлечением ценных компонентов и использованием полученных продуктов для нужд национальной экономики.

Основная проблема освоения техногенных отвалов теплоэлектростанций (ТЭС) – это отсутствие в России перспективных технологий, позволяющих их перерабатывать безотходным способом, как, например, в Германии все золошлаки на 100% перерабатываются, что не требует дополнительных площадей для их хранения.

В настоящее время в России разработаны, но при этом имеют ограниченное применение такие технологии переработки золошлаков, как мокрая магнитная сепарация и флотация. Указанные технологии позволяют обеспечить эффективное извлечение оксидов алюминия, оксидов железа, а также угольного недожога. Это позволило получить эколого-экономический эффект за счет реализации дополнительной товарной продукции и снижения платы за размещение твердых отходов в размере свыше 72 млн руб. в год.

В России на текущий момент времени на угольном топливе функционирует 172 ТЭС. В их золошлаках находится порядка 1,5 млрд т золошлаковых отходов (ЗШО) [17].

По данным ЗАО «АПБЭ», площадь золоотвалов достигает 28 тыс. га. При этом утилизируется и используется не более 8% (1,5– 2,1 млн т) годового выхода ЗШО (около 30 млн т). Если данная тенденция сохранится, то к 2020 году объем накопленных ЗШО может превысить 1,8 млрд т.

По экспертным оценкам, затраты на содержание 1 т ЗШО составляет от 400 до 700 руб., или 5–7% себестоимости производства электроэнергии и тепла на угольной ТЭС. Объем инвестиций в реконструкцию одного золоотвала может достигать 1 млрд руб. Стоимость строительства 1 золоотвала – 2–4 млрд руб.

В течение 3–5 лет переполнение ЗШО приобретет массовый характер, и данный процесс уже начался.

Возникает риск ограничения мощности угольных генераций и вывода их из энергетического баланса. По данным Росстата, стоимость Экибастузского угля составляет 410 руб. без учета НДС. Его зольность составляет 40–48%, у Кузнецкого угля – 15–40%. Рефтинская ГРЭС имеет замкнутую гидравлическую систему золоудаления. Складирование золы осуществляется на золоотвале № 2, площадью 992 га в 4,5 км от ГРЭС. Годовой выход золошлаков 5 млн т. Золоотвал № 1 площадью 450 га заполнен и выведен из работы, ведутся работы по его рекультивации [11].

В целях решения вышеуказанных проблем в ходе проведения авторских научных исследований был разработан новый способ борьбы с техногенными отходами на основе принципа обогащения минерального сырья, который был запатентован в Российской Федерации [17]. Устройство для осуществления указанного способа использует адаптивные компьютерные программы и алгоритмы нейронных сетей, также является частью патента [17]. Авторами патента были поставлены и решены следующие основные задачи:


<< 1 2 3 4 5 6 7 8 ... 18 >>
На страницу:
4 из 18