Оценить:
 Рейтинг: 0

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…

Год написания книги
2019
<< 1 2 3 4 5 6 7 8 >>
На страницу:
3 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

На любом рынке есть несколько игроков, занимающих 60—90% доли рынка.

Несколько рок-исполнителей или авторов книг забирают на себя 90% популярности и продаж.

Из 100 кандидатов в президенты 5% заберут 95% голосов. И т. д.

Да та же удовлетворенность сотрудников работой в компании будет давать смещение или в одну, или во вторую сторону – и в придачу влиять на другие аспекты работы (это так проявляется способность удовлетворенности, как базовой эмоции, к генерализации).

В-третьих, важность выборки случаев / объектов / наблюдений для применения их ко всей популяции (вся популяция объектов называется «генеральная совокупность»), которую Вы исследуете.

Измерив какие-то физические величины в одном месте, Вы скорее всего получите ± те же самые в другом – ну или с минимальной вариативностью.

Но измерив, например, отношение к кандидату в президенты или расовым вопросам в регионе, Вы точно не получите их ± такими же в другом. Или, замерив удовлетворенность работой в одной компании, Вы не получите тот же результат в другой компании.

И, в-четвертых, важно понимать, что одно-единственное социально-экономическое явление может перевернуть все Ваши представления и закономерности вверх дном. В естественно-технических системах каждый один уникальный случай не ведет к глобальным изменениям.

И пятое – наличие модели для анализа в социально-экономических дисциплинах критически важно.

Модель (Ваше представление, набор предположений об исследуемом объекте) должна предшествовать анализу (кроме случаев, когда у Вас поисковый анализ, цель которого изобрести новые или уточнить существующие модели – но в бизнесе таким вряд ли Вы будете заниматься).

Только по модели Вы можете описать, измерить и прогнозировать поведение / развитие какого-то события или объекта. О важности моделей поговорим отдельно в следующей главе.

Модель

Раздел обязателен к прочтению, даже тем, кому он кажется философским и далеким от аналитики.

Под моделью не имеются ввиду статистические алгоритмы и методы обработки данных.

Словом «модель» обозначается некое представление исследуемого объекта, процесса, явления.

Модель – это набор увязанных между собой предположений и понятий, выстраивающий определенный взгляд на объективную реальность.

На рис. 3 изображены несколько наиболее известных моделей – Солнечная система, ДНК, молекула…

Рис. 3. Несколько наиболее известных моделей

Например, элементы ДНК – пары нуклеотидов имеют 4 компонента АТГЦ (аденин, тимин, гуанин и цитозин), которые имеют взаимосвязь А с Т и Г с Ц.

Конечно же, модель строится на основании ограниченного множества известных нам данных (элементов, компонентов, свойств и взаимосвязей) об оригинале (реальном объекте объективной реальности).

Самим оригиналом (объектом объективной реальности) модель не является и на объективную реальность (окружающий мир, явление, протекающие процессы и т.д.) она никоим образом не влияет.

Зато она влияет на наше понимание и отношение к этой реальности.

Только модель любого объекта позволяет нам:

· формально его описать

· делать измерения и интерпретацию полученных результатов

· спрогнозировать его поведение / развитие в будущем

· а также понять его историю в прошлом.

Кроме того, модель позволяет постоянно обучаться, уточнять и добавлять взаимосвязи между ее элементами и компонентами – и, возможно даже, накопленные знания со временем изменят само наше представление о модели. Схематически это все изображено на рис. 4.

Рис. 4. Динамика взаимосвязей модели и реальности

Вспомните, как развивались представления (модели) о Земле по мере накопления знаний и установления новых взаимосвязей: от плоскости на китах и черепахах до Земли-центра и до того, что она крутится вокруг Солнца (рис. 5).

Рис. 5. Изменение представлений о модели Земли по мере накопления данных и знаний

С моей т.з. наличие некой общей модели особенно важно для социальных, экономических и бизнес-дисциплин, где представление о реальности (модель) на порядок важнее чем для той же биологии, геологии, физики, астрономии и т.д., базирующихся на фундаментальных естественных законах.

А люди часто брезгуют моделями, считая их уделом ученых-теоретиков, отдавая предпочтение инструментам / методам… Но эффективность применения инструмента крайне зависит от того, для чего и применительно к какой реальности (объекту, событию, процессу и т.д.) мы его используем.

Я сам не раз наблюдал как менеджеры, профессионалы и даже ученые использовали аналитический инструментарий для прогнозов, но без понимания модели результаты этих попыток предсказаний были аналогичны гаданию на картах Таро.

Даже если рассматривать бизнес и организацию, которые являются социально-экономическими системами. Любой бизнес, любая организация внутри себя также может быть представлена простой операционной моделью как набором элементов и компонентов со взаимосвязями (на рис. 6 авторское представление).

Рис. 6. Базовое представление операционной модели предприятия

Если посмотреть шире (рис. 7) – то организация является открытой системой и неразрывно связана с внутренней и внешней средой.

Если посмотреть еще шире, детализируя окружение компании: клиенты, конкуренты, продукт, процессы, структура, культура и сотрудники компании, ее поставщики и вся экономика – все это уже элементы большой бизнес-модели.

Соответственно на базе моделей аналитику можно очень успешно применять в бизнесе для принятия более взвешенных бизнес-решений, особенно в условиях неопределенности.

Рис. 7. Связь операционной модели с внешней и внутренней средой

Модель – одна из важнейших вещей в аналитике. Именно модель исследуемого объекта / явления / процесса позволяет правильно осуществить анализ: от того какие данные собирать и до того как правильно интерпретировать полученные данные.

Интуиция или аналитика?

Среди людей есть те, кто верит цифрам, а есть те, кто полагается на «чуйку» и интуицию. И это также выражено в бизнесе и менеджменте.

Многие полагают, что достаточно только чутья, бизнес-интуиции и имеющегося опыта – и приводят в пример ряд успешных проектов или решений, принятых вопреки статистике, исследованиям и аналитике.

Например, некоторые приводят Генри Форда, который когда-то сказал, что если бы он полагался на исследование мнений клиентов, то ему бы пришлось заниматься выведением более быстрых пород лошадей, а не автомобилями.

Лукавят, потому что с одной стороны речь тут о технологии, а с другой стороны Г. Форд на самом деле никогда не брезговал аналитикой в управлении предприятием.

Более того, только аналитика позволяет накапливать знания, наращивать и объяснять опыт, усиливать практическую интуицию, а в самом идеальном варианте – возвести к понимаю неких концептуальных моделей.

Я говорю об интуиции и опыте в связке, потому что для меня интуиция – не что иное как «свернутый опыт» человека. Например, говорят, что опытный механик «по звуку машины» может определить проблемы. На самом деле он улавливает ряд мельчайших моментов (данных) в работе авто, но просто уже делает их интерпретацию на таком уровне автоматизма, что не способен объяснить на что именно он обращал внимание, когда поставил «точный диагноз».

Дискуссия о том, что важнее – опыт / интуиция или аналитика несостоятельна в принципе. Вообще ИЛИ здесь неуместно – более целесообразно использовать И.

Ведь сама по себе ни статистическая информация, ни ее анализ, ни обнаруженные статистические значимые взаимосвязи действительно не дают автоматических ответов на вопросы – поэтому модель, интуиция, размышления и воображение (творческий подход) имеют очень большое значение.
<< 1 2 3 4 5 6 7 8 >>
На страницу:
3 из 8