Оценить:
 Рейтинг: 0

Аналитика и Data Science. Для не-аналитиков и даже 100% гуманитариев…

Год написания книги
2019
<< 1 2 3 4 5 6 7 8 >>
На страницу:
5 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Выборка и генеральная совокупность

Реальность обычно представлена невероятно большим количеством случаев / наблюдений / объектов. Людей, жителей, клиентов, компаний, растений или животных и т. д. И вся их популяция представляет собой генеральную совокупность.

Например, если объектом нашего интереса (за кем мы желаем понаблюдать и изучить) являются жители конкретного города, то все они и есть наша генеральная совокупность. Но если объектом интереса были бы, к примеру, только люди трудоспособного возраста (или имеющие право голоса на выборах) в этом городе, то наша генеральная совокупность уменьшилась бы.

При решении отдельных задач вполне легко можно исследовать всю генеральную совокупность.

Например, у Вас есть текущая база подписчиков он-лайн журнала – и необходимо предсказать кто из них с высокой долей вероятности не продлит подписку со следующего года.

Для этого у Вас, по сути, есть доступ к базе данных по всей генеральной совокупности – и Вы можете сделать аналитику, используя данные всей базы. Посмотреть, люди с каким профилем демографии, поведения, предпочитаемых рубрик чтения и т. д. не продлевали подписку в прошлом и, наложив обнаруженные закономерности на существующую базу, получить условно доверительный прогноз кто не продлит ее сейчас.

Также с генеральной совокупностью могут иметь дело специалисты кадровых служб, проводящие анализ сотрудников предприятия.

Другое дело, когда Вы решите изучить всех потенциальных клиентов, рынок кандидатов на вакансии или избирателей. Вот тут Вы столкнетесь с тем, что всех их изучить невозможно и дорого. Поэтому Вы будете исследовать только некоторых, а полученные результаты распространять на всю генеральную совокупность.

Вот те некоторые выбранные из генеральной совокупности объекты / образцы / люди / события и будут называться выборкой.

Но с выборкой не все так просто. Основная сложность в формировании выборки – это понимание того, какие именно объекты / образцы в нее включить так, чтобы иметь полную картину. Ведь она должна быть репрезентативной – т.е., полученные по ней результаты должны с высокой долей точности отражать генеральную совокупность.

Иллюстративно генеральная совокупность, выборка и вопрос ее репрезентативности изображены на рис. 10.

Рис. 10. Генеральная совокупность, выборка и вопрос ее репрезентативности

Неужели это настолько важно – какая будет выборка? Приведу такой пример (надеюсь, не обижу чувства верующих). Например, Вы выберете всех, кто участвовал в военных действиях. Эти люди выжили – и Вы обнаружите статистически значимую зависимость с молитвой перед боем. Вы будете впечатлены – неужели молитва реально помогает выжить? Можно ли заявить об этом?

Нет, нельзя. Во-первых, возможно Вы просто путаете причину и следствие (статистические взаимосвязи не означают причинно-следственные связи, о которой мы поговорим позже) – просто во время боевых и критических для жизни моментов люди начинают чаще молиться и надеяться на высшие силы. Поэтому правильная интерпретация – это опять же вопрос модели (элементов и их взаимосвязей) объекта / явления / процесса, который Вы исследуете.

А во-вторых, есть главная проблема в Вашем исследовании – Вы не знаете, сколько также молились, но погибли. Потому что не можете их опросить – они мертвы. Т.е., Вы отобрали нерепрезентативную выборку: она не представляет собой генеральную совокупность.

Для того чтобы выборка отражала генеральную совокупность, чаще всего используют три основных подхода:

1. Случайный: когда объекты для изучения отбираются из генеральной совокупности случайным образом.

2. Стратифицированный: когда генеральную совокупность разбивают на группы (страты) по важным для модели признакам (например, пол, возраст, отрасли, поведение, использование продукта с определенной частотой, частота посещения церкви и т.д.). Объём (%) каждой группы задает то количество объектов / наблюдений, которые надо отобрать из каждой группы. Получаются квоты на отбор тех или иных объектов.

3. Серийный: когда изымают партию товара, выбирают людей, проживающих в многоквартирном доме на конкретной улице, или берут целиком отдельные отделы в компании и т. д.

Соответсвенно, генеральная совокупность и выборка связаны напрямую: чтобы отобрать репрезентативную выборку, главное иметь правильное представление о всей генеральной совокупности.

Переменные

Данные обычно состоят из большого количества отдельных показателей, которые называют переменными. Это, например, доход, количество клиентов, город или страна, отдел, род войск, зарплата, пол, частота курения, количество посещений или часов порносайтов, частота занятия сексом в неделю, количество детей, социальный статус и т. д.

Переменная имеет свое значение для того или иного объекта /случая / наблюдения.

По большому счету переменная – это характеристика объекта / случая / наблюдения. Например, цвет глаз у каждого человека будет свой.

Т.о., каждый случай, объект или наблюдение имеют свои характеристики, т.е., имеет свое значение той или иной переменной. Переменные описывают объект.

Например, на рис. 11 в качестве примера приведены Валя и Иван – это объекты / случаи / наблюдения.

Рис. 11. Объекты и переменные

А их рост, цвет глаз, доход, место проживания, частота путешествий и другие характеристики – это переменные.

Например,

· Валя -женщина, Иван – мужчина.

· Рост Вали = 1,7 метра, а Ивана 1,82.

· У Вали глаза голубые, у Ивана зеленые.

· Валя живет в Омске, Иван в Москве.

· Месячный доход Вали – 80.000 руб, а Ивана – 200.000 руб.

· Валя ездит на отдых за границу редко – раз в несколько лет, Иван часто – несколько раз в год.

Шкалы для измерения переменных

Каждая переменная может принимать различные значения. Значения переменных варьируются и отличаются от случая к случаю, от объекта к объекту.

Ну и Вы уже наверняка заметили, что они могут быть измерены в различных шкалах.

Например, пол – 0 и 1 или 1 и 0. Т.е, мужчина или женщина.

Доход, который выражается в рублях и может принимать большое количество разных значений, хоть до копеек.

Или частота поездок за границу, курения, использования интернета…

Разные шкалы имеют разную информативность. От того, какая шкала используется, зависят также и методы анализа, которые к ней можно применять.

Статисты понапридумывали разные типы шкал, но их в целом можно объединить в три основных типа, которые в книге приводятся в порядке возрастания информативности.

Номинальная шкала (рис. 12) – например, пол, город, страна, семейное положение, политическая партия, ФИО кандидата в президенты.

Рис. 12. Номинальная шкала

По сути, это шкала наименований и классификаций. С ней бессмысленно проводить какие-либо математические операции. Цифры в ней ничего не значат, или, как говорят ученые, не имеют эмпирического значения. Если, например, мы поставим 1 Уфе, а 2 – Самаре, это не означает, что Уфа на ступеньку ниже Самары. Мы можем даже поменять цифры между городами – это ничего не изменит.

Т.е., эта шкала всего лишь определяет принадлежность наблюдения, случая или объекта к какой-то группе и позволяет классифицировать объекты. Тут мы можем посчитать только количество объектов в группе. Например, количество или % мужчин и женщин в нашей выборке. Или количество людей из разных стран или городов. Или количество тех или иных профессий.

Отдельно при рассмотрении номинальных шкал стоит выделить дихотомии – переменные с двумя значениями. Пол, прошёл / не прошёл тест, выжил / погиб, любой вопрос с вариантами ответа только да / нет. Есть методы анализа и прогнозирования, при которых удобно использовать именно дихотомии.

Второй тип шкал – порядковая или ранговая (рис. 13).

Рис. 13. Порядковая (категориальная, ординальная, ранговая) шкала
<< 1 2 3 4 5 6 7 8 >>
На страницу:
5 из 8