Оценить:
 Рейтинг: 0

Электронные и оптоэлектронные ИС, их характеристики: обзор преимуществ и недостатков. Цифровая микрооптоэлектроника

1 2 3 >>
На страницу:
1 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Электронные и оптоэлектронные ИС, их характеристики: обзор преимуществ и недостатков. Цифровая микрооптоэлектроника
Николай Петрович Проскурин

Показано, что параметры направляющих сред и логических элементов цифровых электронных ИС приближаются к определенному пределу. Имеются существенные преимущества оптических и оптоэлектронных устройств в областях передачи, приема, преобразования потоков информации др., в т. ч. в ИС, цифровых устройствах телекоммуникации, компьютерных системах (КС), и т. д., основанные на использовании электронейтральных фотонов и диэлектрических направляющих сред и/или оптических волноводов.

Электронные и оптоэлектронные ИС, их характеристики: обзор преимуществ и недостатков

Цифровая микрооптоэлектроника

Николай Петрович Проскурин

© Николай Петрович Проскурин, 2020

ISBN 978-5-0051-2225-4

Создано в интеллектуальной издательской системе Ridero

В память моих предков и замечательных родителей: отца – инженера, побудившего во мне интерес к науке, технике и матери – врачу, поддержавшей мои устремления.

От автора.

Уважаемые читатели! Это издание является специализированным (область – цифровая оптоэлектроника), базируется на четырех частях адаптированных материалов исследований (проведенных им в 2000—2006 гг. вместе с его коллегами) и диссертации автора

. В первую очередь вся работа адресована экспертам, специалистам, разработчикам в области цифровой микрооптоэлектроники УВЧ диапазона для ознакомления с ее положениями, подходами, методиками и полученными промежуточными результатами. Возможно она заинтересует исследователей, разработчиков, конструкторов и технологов, работающих с «железом» (hard) в перспективной ее области — создания оптоэлектронных логических элементов (ОЛЭ) и переключателей на основе микромощных оптронов УВЧ/СВЧ диапазонов, интегральных схем (ИС) с оптическими связями на их основе, которые, по мнению автора, станут альтернативой в ХХІ столетии электронным цифровым ИС. Она может быть полезной студентам, магистрантам, соискателям и аспирантам технических ВУЗов технических специальностей, интересующихся способами, подходами при создании микромощных оптоэлектронных цифровых и аналоговых микроустройств. Автор признает, что часть исходных данных, инструментарий и методики исследования могли устареть и/или измениться за прошедшее время, однако наблюдаемые им тенденции (trends) остались прежними: подтверждением этого м. б., например, концепт «Optoelectronic on board», etc.; он также будет признателен экспертам, специалистам и разработчикам, кто выскажет конструктивные замечания и/или предложения, уточняющие, дополняющие и раскрывающие потенциал указанного направления развития цифровых и аналоговых ИС.

Аннотация (раздел 1). Электронные и оптоэлектронные устройства для ИС, их характеристики: обзор преимуществ и недостатков.

Показано, что параметры направляющих сред и логических элементов цифровых электронных ИС приближаются к определенному пределу. Имеются существенные преимущества оптических и оптоэлектронных устройств в областях передачи, приема, преобразования потоков информации, др., в т. ч. в ИС, цифровых устройствах телекоммуникации, компьютерных системах (КС), т. д., основанные на использовании электронейтральных фотонов и диэлектрических направляющих сред и/или оптических волноводов.

Анализ оптоэлектронных модуляторов, переключательных устройств, схем ОЛЭ с источником оптического излучения, указывает, что наиболее приемлемым решением является использование твердотельных излучателей. Среди них выделяются светодиоды (СД) – некогерентные излучатели на основе GaAs, GaIn, др. с приемлемым набором качеств, параметров и отличающиеся малым потреблением мощности, достаточным быстродействием и коэффициентом преобразования электрического тока в излучение, длительным временем функционирования и производимые по современным технологиям. Оценка фотоприемников (ФП) ОВЧ, УВЧ диапазонов и их параметров показала, что полупроводниковые структуры (ППС) с раздельным фотопреобразованием и усилением обеспечивают приемлемое быстродействие на рабочей частоте. Анализ входной оптоэлектронной логики схем (типа квазиимпульснопотенциальной – КИПТ) показывает, что при выборе из двух логических базисов (nИЛИ-НЕ, nИ-НЕ) преимуществами обладает первый из них по причине постоянства напряжения питания ФП и повторяемости схемной реализации логических входов ОЛЭ nИЛИ-НЕ (при увеличении входных переменных c одного до n).

Перечень сокращений

АЧХ – амплитудно- частотная характеристика

Б – база

БМ – библиотека моделей

ВАХ – вольтамперная характеристика

ВОК – волоконно-оптический канал

ВОЛС – волоконные оптические линии связи

ВОП – волоконно-оптическая пластина

ВОСС – волоконные оптические системы связи

ВП – виртуальные параметры

ВУ – вычислительное устройство

ВЧ – высокие частоты, высокочастотный (О-очень, У-ультра, С-сверх)

ГИ – генератор импульсов (КГИ – кольцевой ГИ)

ДП – двухполюсник

ЗЗ, ЗП, ЗВ – зоны: запрещенная, проводимости, валентная

ИД – исходные данные

ИК – инфракрасный

ИКМ – импульснокодовая модуляция

ИЛ – инжекционный лазер

ИП – источник питания (Д – дополнительный, О – основной)

ИС – интегральная схема

ИСОС – интегральная схема с оптическими связями

ИФУ – интегральное фотоприемное устройство

К – коллектор

КПД – коэффициент полезного действия

ЛД – лазерный диод

МАЭС – моделирование аналоговых электронных схем

ММП – математическая модель прибора

МОП – металл-окисел-полупроводник

МПК – метод перевернутого кристалла

НЗ – носители заряда

ОИ – оптоэлектронный инвертор

ОЛЭ – оптоэлектронный логический элемент

ОЛУ – оптоэлектронное логическое устройство

ОПЗ – область пространственного заряда
1 2 3 >>
На страницу:
1 из 3