Оценить:
 Рейтинг: 0

Биохимия в практике спорта

Год написания книги
2020
Теги
<< 1 2 3 4 5 6 7 8 >>
На страницу:
6 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

.

Происходящее под влиянием тренировки снижение окисления углеводов во время выполнения мышечной работы компенсируется увеличением скорости окисления липидов.

Скорость гидролиза липидов очень низкой плотности (ЛОНП) также возрастает под влиянием тренировки благодаря повышению в мышцах энзиматической активности и большей площади поверхности эндотелиальных капилляров. Однако даже в этом случае ЛОНП не могут составить более 10 % своего вклада в общее энергообеспечение. Этот эффект может иметь отношение к улучшению в крови липидного профиля, проявляющегося у людей, которые после малоподвижного образа жизни стали более активными. Восстановление запасов внутримышечных липидов после пролонгированных физических нагрузок может улучшить извлечение их из крови.

Гормональная адаптация при тренировке выносливости

Повышение окислительной способности мышц не является единственным способом, благодаря которому происходит модификация субстратного метаболизма под влиянием тренировки. Нейроэндокринные ответы играют важную роль в регуляции мобилизации и утилизации энергетических субстратов во время мышечной работы. Активность симпатического отдела вегетативной нервной системы, о которой можно судить по концентрации норадреналина в плазме, при выполнении одинаковой мышечной работы абсолютной мощности под влиянием тренировки снижается, оставаясь, однако, неизменной при работе одинаковой относительной мощности.

Уровни адренокортикотропного гормона, кортизола, глюкагона и гормона роста во время выполнения физических упражнений у тренированных лиц повышаются в меньшей степени. Концентрация инсулина при напряженной мышечной работе обычно падает. Однако в состоянии тренированности это снижение менее выражено, в связи с чем, концентрация инсулина у тренированных лиц во время мышечной активности проявляет тенденцию к более высоким показателям по сравнению с нетренированными. Этот эффект тренировки отражает менее выраженную степень угнетения инсулиновой секреции под влиянием меньшей концентрации адреналина в плазме тренированных лиц. Эти адаптационные изменения в гормональном ответе на физические нагрузки представляют собой специфическую реакцию на тренировку.

Более низкие уровни кортизола и катехоламинов должны указывать на снижение чрезмерного стресса, снижение ЧСС.

Проявляющееся под влиянием тренировки замедление скорости мышечного гликогенолиза отчасти обусловлено снижением концентрации в плазме адреналина, который вносит свой вклад в снижение скорости продукции глюкозы в печени и в менее выраженный липолиз в адипозной ткани.

Возможно, что столь высокая концентрация инсулина при физической нагрузке будет способствовать дополнительному поступлению глюкозы в скелетные мышцы. Однако известно, что под влиянием тренировки использование глюкозы плазмы во время мышечной работы снижается. Отмечаемая под влиянием тренировки относительно более высокая концентрация инсулина во время выполнения физического упражнения, возможно, имеет большее значение для угнетения липолиза и продукции глюкозы в печени, чем для его предполагаемого влияния на утилизацию глюкозы мышцами.

Следует отметить, что ни одно из указанных эндокринных изменений не может удовлетворительно объяснить повышение внутримышечного липолиза под влиянием тренировки. Теоретически он может возрастать, если чувствительность скелетных мышц к адреналину увеличивается.

Длительность адаптации при тренировочных занятиях и дезадаптации (детренировки)

Продолжительность периода адаптации к тренировке зависит в основном от величины тренировочных нагрузок (их интенсивности, продолжительности и частоты) и является специфичной для мышц, задействованных в сократительной активности. Тренировочные занятия должны проводиться на протяжении нескольких недель или месяцев, чтобы происходящие под ее влиянием процессы специфической биохимической адаптации позволили мышцам перейти на более высокий функциональный уровень. На активность митохондрий влияет сочетание интенсивности физических нагрузок с их продолжительностью. Пик адаптационных изменений митохондрий проявляется при сокращении времени выполнения упражнений и увеличении их интенсивности примерно от 40 до 90 % VO

max.

Продолжительность периода изменений субстратной утилизации во время выполнения физических упражнений, происходящих под влиянием тренировки, тесно связана с периодом возрастания активности митохондриальных ферментов, что отмечается при исследовании эффектов как тренировки, так и детренировки. Но после пяти-семи дней тренировки активность митохондриальных ферментов или их окислительная способность не меняется.

Вполне возможно, что на первых этапах тренировочного процесса не повышение метаболической способности митохондрий, а другие механизмы ответственны за происходящие изменения в использовании субстратов. К таким факторам можно отнести раннее изменение гормонального ответа на физическую нагрузку. По истечении нескольких дней тренировочных занятий катехоламиновая реакция на физическую нагрузку значительно ослабевает. После одной недели тренировки концентрация адреналина в плазме снижается примерно на 40 %, а концентрация норадреналина во время выполнения физического упражнения с мощностью, эквивалентной 70 % VO

max, снижается примерно на 25 %.

Происходящие под влиянием тренировки на выносливость адаптационные изменения могут поддерживаться только при систематическом занятии физическими упражнениями. В течение периода прекращения тренировочных занятий приобретенные адаптационные изменения утрачиваются. Некоторые изменения могут возвратиться к исходному уровню за очень короткое время.

Около 50 % прироста количества митохондрий под влиянием тренировки может быть потеряно в течение 1 месяца без тренировочного процесса. Возобновление тренировки позволяет восстановить адаптационные изменения, однако времени, необходимого для возвращения прежнего уровня тренированности, требуется больше, чем для достижения детренированности.

2.5. Биохимия процессов утомления, восстановления и перенапряжения

Мышечная утомляемость

Тренируя мышцы, можно добиться значительных изменений их морфологических, функциональных и метаболических показателей.

Неспособность мышц поддерживать мышечное сокращение заданной интенсивности, возможно, связано с перетренированностью или не- восстановлением:

– недостатком – энергетических запасов, АТФ, креатинфосфата, белков, жиров, кислорода (рО

, гипоксия), глюкозы и гликогена (гипогликемия);

– закислением ткани (ацидоз);

– потерей жидкости (дегидратацией);

– избытком в крови продуктов обмена (аммиака, АДФ, мочевины) и недоокисленных продуктов перекисного окисления липидов (ПОЛ), молочной кислоты;

– накоплением кетоновых тел (кетоз) и углекислого газа (рСО

);

– нарушением электрохимического сопряжения;

– изменением функционального состояния нервной системы;

– нарушением теплорегуляции и стабильности внутренней среды организма (гомеостаза);

– несоответствием между сократительной активностью и метаболическими возможностями мышцы.

Показатели повреждения мышечной ткани

К показателям повреждения мышечной ткани относятся:

– длительно высокий уровень КФК и ЛДГ;

– длительно высокий уровень миоглобина, BNP;

– обнаружение тропонинов и актина в крови;

– высокие уровни малонового диальдегида, диеновых конъюгатов, молекул средней массы;

– снижение активности глутатионпероксидазы, миелопероксидазы, супероксиддисмутазы;

– высокий уровень активных форм кислорода (ОМГ- тест);

– появление в моче креатина и 3-метил-гистидина.

Возможны ошибки в определении мочевины в случае:

1. Отсутствия учета тренировочных нагрузок.

2. Избыточного использования протеинов и аминокислот. Аминокислоты, не использованные в процессе синтеза белков, дезаминируются с образованием мочевины, которая выводится из организма.

3. Дефицита углеводов в рационе питания спортсменов.

Показатели микроциркуляции при утомлении (показатели гемостаза)

КМ – коэффициент микроциркуляции – равен биологическому возрасту.

(КМ) = 7,546Фг – 0,039Tr – 0,381АПТВ + 0,234ФА + 0,321РФМК – 0,664ATIII + 101,064,

Фг – уровень фибриногена (г/л); Тr – число тромбоцитов (109/л);
<< 1 2 3 4 5 6 7 8 >>
На страницу:
6 из 8