Оценить:
 Рейтинг: 0

Все науки. №2, 2022. Международный научный журнал

Жанр
Год написания книги
2022
<< 1 2 3 4 5
На страницу:
5 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

А также необходимо определить в (2.16) начальное число бомбардирующих протонов, указав, что их общая сила тока 100 А, а время одного акта, который вытекает уже из параметров циклотрона, описываемый в предыдущих главах составляет 164,065 нс, что гораздо больше времени даже самой долгой реакции, откуда можно вычислить заряд, а из него уже и число протонов (2.17).

Это число всех частиц, прошедших сквозь пластину и не вошедших в реакцию, а для того, чтобы вычислить те, которые вошли в реакцию, достаточно определить разность в (2.19), а затем уже вычислить из них заряд, с учётом того, что выходит именно 3 альфа-частицы, следовательно, выходящий заряд в 3 раза превышает один выходящий заряд, вместе с этим учитывая, что каждая альфа-частицы несёт в себе по 2 элементарных заряда, то заряд увеличивается ещё в 2 раза (2.20) и силу тока (2.21).

Говоря же о силе тока, выводимой в данном соотношении, важно отметить, что здесь учитывается именно циклотронное время, без участия времени линейного ускорителя или инжектора, из-за чего может наблюдаться изменение или погрешности при реальном детектировании силы тока, но поскольку конечная энергия вычисляется не из силы тока, а из выходящего заряда, то в вычислениях энергий, никаких погрешностей не наблюдается и данное указание действует как для этой, так и для всех в последующем описанных шести ядерных реакциях.

И наконец, для полноты картины остаётся лишь определить выходящее кулоновское отталкивание, определив радиус альфа-частиц, поскольку они будут отталкиваться друг от друга, в (2.22), а уже в (2.23) и сам барьер.

Следовательно, вылетающая альфа-частица также приобретёт дополнительную энергию, и конечная энергия будет составлять 6.338789969 МэВ.

Итак, можно подвести итог, что в данной реакции, с анализом иных каналов будут образовываться протоны с энергией 2,312691131 МэВ и током 100 А, в ионизаторе и циклотроне за 164,065 нс, а затем они будут бомбардировать тонкую пластину бора-11, откуда будут вылетать альфа-частицы с током 576,4075638 А и энергиями 3,746689623 МэВ, а после выходящего кулоновского барьера с энергиями в 6,338789969 МэВ, также будут образовываться атомы углерода-12, благодаря которым температура пластины будет изменяться на 3,214 К.

Вылетевшие альфа-частицы будут направляться в генератор, который устроен либо по принципу МГД-генератора, либо он будет создавать магнитное поле, где альфа-частицы будут двигаться по винтовому пути, образуя некоторую индукцию, благодаря тому, что они имеют заряд.

А изменяя число витков можно изменять поток вектора магнитной индукции, образующуюся в этом движении, в результате этого изменения потока, его можно преобразовать в электричество, получая ЭДС индукции на внешней катушке.

В обоих случаях результат не изменится и выполняемая в данном случае работа за акт составит 599,4486355 Дж, а за секунду уже 3,653726484*10

 Дж, а если перевести это значение в Вт*ч, то это получается 1 014 924,023 Вт*ч, что является довольно приличным указанием, момент с потребление для циклотрона определяется как 55,56389 кВт*ч, но более точные показатели рассчитываются в последующих исследованиях.

Библиографический список

1. Р. А. Сюняев. Физика космоса. Маленькая энциклопедия. Советсткая энциклопедия. Изд-во Наука. 1986.

2. Дж. Фейенберг. Из чего сделан мир? Атомы, Лептоны, Кварки и другие загадочные частицы. Изд-во Мир. 1981.

3. В. Голощапов. Физика космоса. Элементарные частицы материи. Супер. 2016.

4. В. А. Фок. Квантовая физика и строение материи. Изд-во URSS. 2009.

5. Дж. Глимм, А. Джаффе. Математические методы квантовой физики. Изд-во Наука. 2017.

6. И. В. Баргатин, Б. а. Гришанин, В. Н. Задков. Запутанные квантовые состояния атомных систем. Редакция им. Ломоносова. 2001.

7. Г. Кейн. Современная физика элементарных частиц. Изд-во Мир. 1990.

ВЛИЯНИЕ РАЗЛИЧНЫХ ЯВЛЕНИЙ ПРИ ПРОХОЖДЕНИИ ЧЕРЕЗ СРЕДУ УЛЬТРАЗВУКОВОЙ ВОЛНЫ

Кучкоров Ахлиддин Мирзохидович

Преподаватель физико-технического факультета Ферганского государственного университета

Ферганский Государственный Университет, Узбекистан

Аннотация. Изучение различного вида волн и колебаний всегда представляло большой интерес в науке и технике, приводя к самым различным изобретениям и открытиям, начиная от слабых звуковых волн, с огромными длинами волн, завершая самыми различными электромагнитными волнами, именуемыми ионизирующим излучением. Важным на сегодняшний день является изучение волн, находящихся в частоте между звуковыми и световыми диапазонами, когда уже частота колебаний заставляет излучать различные кванты энергии.

Ключевые слова: ультразвук, частота колебаний, длина волны, физико-математические характеристики.

Annotation. The study of various types of waves and vibrations has always been of great interest in science and technology, leading to a variety of inventions and discoveries, ranging from weak sound waves with huge wavelengths, ending with a variety of electromagnetic waves, called ionizing radiation. It is important today to study the waves that are in the frequency between the sound and light ranges, when the frequency of vibrations already causes various quanta of energy to emit.

Keywords: ultrasound, oscillation frequency, wavelength, physical and mathematical characteristics.

1. Введение

Сам по себе ультразвук является видом звука, то есть явления распространения механических колебаний в твёрдой, жидкой и газообразной среде. Ультразвук также обладает своей частотой и амплитудой, как и любая иная волна, где амплитуда характеризует громкость звука, а частота его тон или высоту. Если обратить внимание на распределение этого вида колебаний по их частотам, но можно отметить инфразвук – то есть звук, с частотой от 0 до 16 Гц, то есть до частоты слышимости человека. После него идёт слышимый звук, ощущаемых ушами человека, находящегося в диапазоне от 16—20 Гц до 15—20 кГц. Все частоты до 1 ГГц считаются ультразвуком, а от 1 ГГц гиперзвуком.

Указанные частоты являются частотами колебания молекул с постоянными скоростями, зависящими от параметров самой среды и определяемые по формуле (1).

Когда же частота и длина волны звука имеют иную зависимость (2).

По этой закономерности и можно определить необходимые параметры для определённого вида колебаний, а именно звуковых и анализировать явления с ними.

2. Влажность среды

Перед дальнейшим описанием многих явлений, важно остановится на некоторых изменениях параметров самой среды и анализ эффекта этих изменений на исследуемый объект. И одним из подобных факторов является влажность. Сама по себе – влажность в воздушной среде представляет собой наличие воды (влаги) в воздушном пространстве. То есть при переходе в подобной среде ультразвука, важно указать на частое изменение среды, то есть колеблются в один момент молекулы кислорода, в иной же момент – молекулы самой воды.

Если же вспомнить более точно, то скорость звука в воздухе составляет 331 м/с, когда же в воде 1483 м/с, где видна существенная разница, по этой причине сама концентрация влаги, то есть показатель влажности самой среды и демонстрирует, насколько ускоряется ультразвук в данной среде с определённой влажностью. Если же имеется ввиду концентрация не только влаги, но и иных газов или других объектов в среде, то достаточно рассмотреть переход скоростей самого звука, и средняя скорость колебаний в такой среде определяется по (3) для общего и процентного соотношения (3

).

В случае же когда действуют 3 вещества в среде, то закономерность становится (4), если 4 вещества, то (5). То есть эту закономерность в общем виде можно рассмотреть и через суммы (6).

То есть для воздуха с влажностью в 10%, скорость ультразвука будет составлять (7).

Для среды с наличием воздуха в 59%, паров гелия в 12%, водорода в 6%, воды в 7%, железа в 11% и алюминия в 5%, скорость ультразвука составит (8).

Таким образом анализ на моменте исследования нескольких сред можно завершить и исследовать взаимодействие с изменениями температуры среды на ультразвуковые колебания.

3. Электрическое и магнитное поле

Исследуя явление взаимодействия ультразвука с различными физическими явлениями, нельзя не остановится на электрическом и магнитном поле. И изучая этот момент, можно столкнуться с задачей. Пусть через среду проходит ультразвук и под некоторым углом относительно этой механической волны проходят линии магнитного поля. Какое будет оказано воздействие на ультразвук?

Говоря об магнитном поле, нельзя не упомянуть и электрическое, поскольку вокруг векторов магнитного поля, который в данной задаче направлены прямо без каких-либо искажений, действуют вихревые векторы электрического поля, образуемые магнитным полем из закономерности электромагнитного взаимодействия. И останавливаясь на моменте, что среда полностью нейтральна, можно сделать заключение, что никакого взаимодействия не будет оказано, поскольку магнитное и электрическое поле действуют только на электрические заряды.

Но действительно ли среда полностью нейтральна? Если останавливаться на этом положении, важно учесть, что температура в среде должна быть нулевой, то есть колебаний за счёт температуры, образующие шум, должны отсутствовать и не передаваться энергия для электронов на орбитах атомов. Также среда должна быть полностью изолирована от какого-либо источника излучения, способного передать энергию. Но как известно, подобная среда может быть создана лишь теоретически, ибо достижение абсолютного нуля невозможно, поскольку это создаст много неточностей и кроме того, тогда возникнет и парадокс с так называемыми «нулевыми колебаниями» – следствием из теории квантовой механики для описаний модели атома.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4 5
На страницу:
5 из 5