Оценить:
 Рейтинг: 0

Компоненты неметаллических материалов и их свойства. Монография

Жанр
Год написания книги
2023
<< 1 2 3 4 5 6 7 >>
На страницу:
3 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Главные типы полимеров

Рассмотрим кратко особенности основных крупнотоннажных пластмасс, широко использующихся на сегодняшний день.

Полиэтилен – простейший из термопластов и полиолефинов, имеющий формулу ( – СН2 – СН2—) n, где n – здесь и далее равна степени полимеризации. Материал подразделяется на несколько видов, свойства которых существенно отличаются. Наиболее употребляемыми являются полиэтилен низкого давления (высокой плотности) и полиэтилен высокого давления (низкой плотности), которые получаются при разных условиях синтеза и наличия специальных катализаторов. Плотность ПЭВД – около 920 кг/куб. м, плотность ПЭНД —около 960 кг/куб. м.

ПЭНД – более кристаллический полимер, он обладает лучшими прочностными характеристиками, жесткостью и более высокой температурой размягчения. Полиэтилен имеет хорошие химические характеристики, стоек к воде органике и хлорорганике, но нестоек к сильным окислителям и фотодеструкции. ПЭ обладает отличными диэлектрическими характеристиками и широким диапазоном температур эксплуатации.

Полипропилен, имеющий формулу ( – СН (СН3) – СН2 – ) n – также относится к классу полиолефинов. Это вид полимеров, имеющих значительную степень кристалличности, при примерно равной стоимости с полиэтиленом выигрывает у него за счет более низкой плотности, которая составляет около 900 кг/куб. м.

ПП имеет лучшую термостойкость, чем полиэтилен и может эксплуатироваться до 140 градусов С (для некоторых марок). Также он славится хорошей прочностью и жесткостью, стоек к истиранию, эластичен.

В современной промышленности используется всё меньше полипропилена гомополимера и все больше различных сополимеров пропилена и этилена, для простоты именующихся также «полипропилен».

Полистирол – термопласт, который синтезируют путем полимеризации стирола. В чистом виде ПС является хрупким прозрачным пластиком. ПС имеет хорошие диэлектрические данные и применяется для электроизоляции. Полистирол, как и описанные выше полиолефины хорошо перерабатывается в изделия всеми способами переработки.

В современной промышленности используются в основном сополимеры стирола, так называемые стирольные пластики. В их перечень входят как ударопрочные марки полистирола (на самом деле сополимеры главным образом с каучуками), так и широко известный АБС-пластик, полимеры SAN, ASA и многие другие.

Поливинилхлорид или ПВХ – простейший из группы хлорорганических полимеров, имеющий формулу ( – СН2 – СНСl – ) n. Этот известный всем термопласт, получается при полимеризации простейшего хлорсодержащего ненасыщенного органического соединения винилхлорида (хлорэтилена). В чистом виде называется «смола ПВХ». Существует две основные группы ПВХ материалов, получаемые из одной и той же смолы и отличающиеся составом композиции, главным образом количеством пластификатора, это – жесткий ПВХ и пластикат.

Важнейшее качество ПВХ – его трудногорючесть. Поливинилхлорид не поддерживает горение, поэтому широко используется в строительстве. Этот полимер обладает хорошими физико-механическими данными. Хотя как диэлектрик поливинилхлорид уступает ПЭ и ПС он гораздо чаще используется (в качестве пластиката) для изоляции проводов и кабелей ввиду своей негорючести. Недостатком ПВХ является сложность его переработки в изделия, т.к. он склонен к деструкции уже при температурах около 100 градусов С, тогда как плавится при гораздо более высоких значениях.

Политетрафторэтилен (простейший и наиболее используемый фторопласт, также известный как фторопласт-4), обладающий формулой ( – CF2—CF2 – ) n является термопластичным полимером, который получают полимеризацией тетрафторэтилена. Фторопласт имеет отличную химическую стойкость, диэлектрические характеристики и одни из самых широких возможностей эксплуатации по температуре – от -270 градусов С до 260 градусов С. ПТФЭ не растворим в органических растворителях. Материал имеет прекрасные антифрикционные и гидрофобные свойства, что обеспечивает его применение для выпуска различных покрытий и изделий для снижения их коэффициентов трения до минимальных значений.

Полиметилметакрилат (ПММА, оргстекло) – также термопласт, получаемый полимеризацией ММА. Материал обладает хорошей прочностью, хим- и маслобензостойкостью.

Главным достоинством ПММА является его оптическая прозрачность, что позволяет применять материал в светотехнике, а также электротехнике, лазерной технике и в качестве клеевой основы.

Полиамиды – категория термопластичных полимеров, имеющих в цепи макромолекулы амидогруппу – NH – СО – (вместо Н возможен другой радикал). Плотность полиамидов варьируется от 1000 до 1300 кг/куб. м.

ПА имеют высокую прочность, которая в сочетании с волокнистыми наполнителями дает этому виду полимеров успешно замещать металлические детали. Также полиамиды обладают износостойкостью, маслобензостойкостью, хорошими диэлектрическими качествами. Отличная химическая резистентность также присуща почти всем полиамидам.

Реактопласты (термореактивные смолы) – группа материалов, отличная от термопластов тем, что после первоначального синтеза и получения изделий не способна к повторной переработке ввиду образования неплавкой сетчатой структуры между макромолекулами. Такой процесс также называют сшивкой. Существует много вариантов термореактивных полимеров, например резольные, новолачные, эпоксидные, полиэфирные смолы и т. д.

Термореактопласты, благодаря своей природе, характеризуются очень высокими химсвойствами, хорошими термо-механическими и диэлектрическими характеристиками.

1.3. Пластмассы

Пластмассы (пластические массы, пластики). Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия.

Эти вещества состоят в основном из углерода (C), водорода (H), кислорода (O) и азота (N). Все полимеры имеют высокую молекулярную массу, от 10 000 до 500 000 и более; для сравнения, кислород (O2) имеет молекулярную массу 32. Таким образом, одна молекула полимера содержит очень большое число атомов.

Некоторые органические пластические материалы встречаются в природе, например асфальт, битум, шеллак, смола хвойных деревьев и копал (твердая ископаемая природная смола). Обычно такие природные органические формуемые вещества называют смолами. В ряде случаев в качестве сырья применяются природные полимеры – целлюлоза, каучук или канифоль; чтобы достичь желаемой эластичности, их подвергают различным химическим реакциям. Например, целлюлозу посредством разнообразных реакций можно превратить в бумагу, моющие средства и другие ценные материалы; из каучука можно получить резину и изолирующие материалы, используемые как покрытия; канифоль после химической модификации становится более прочной и устойчивой к действию растворителей.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство используемых пластмасс являются синтетическими. Органическое вещество с небольшой молекулярной массой (мономер) сначала превращают в полимер, который затем прядут, отливают, прессуют или формуют в готовое изделие. Сырьем обычно являются простые, легко доступные побочные продукты угольной и нефтяной промышленности или производства удобрений.

Полимеризация.

Слово «полимер» – греческого происхождения. Буквально, полимер – это молекула, состоящая из многих (поли-) частей (мерос), каждая из которых представляет собой мономерное, т.е. состоящее из одной (монос) части, звено полимерной цепи. Реакция получения полимера из мономера называется полимеризацией. Полимерные молекулы обычно представляют собой очень длинные цепи, линейные или разветвленные. Образование этих молекул возможно благодаря тому, что атомы углерода легко и прочно соединяются друг с другом и со многими другими атомами.

Известно много типов полимеризации, однако наиболее распространены два из них: присоединительная (аддиционная) полимеризация и поликонденсация.

В присоединительной полимеризации мономеры присоединяются друг к другу непосредственно, без изменения состава. Например, молекулы этилена H

C=CH

, состоящие из 6 атомов каждая, соединяются, образуя полиэтилен. Фрагмент полиэтиленовой цепи выглядит следующим образом:

Вся цепь содержит более 6000 атомов. Углеродные атомы цепи соединены простыми (одинарными), а не двойными связями (рис. 1). Эту реакцию можно записать как nH

C=CH

® [—CH

—CH

—]

, где n (число составных звеньев) может достигать 1000 и более, т.е. структура в скобках должна повторяться 1000 и более раз. Сходным образом этиленоксид C

H

O превращается в полиэтиленоксид согласно схеме:

Эти структуры возможны, поскольку углеродный атом образует четыре связи с другими атомами, кислород – две, а водород – одну связь.

Присоединительная полимеризация редко идет самопроизвольно. Она может быть инициирована определенными катализаторами, обычно свободнорадикальными, катионными или анионными. Инициированные ими реакции – экзотермические (идущие с выделением тепла). Промышленные полимеризационные процессы, проводимые в интервале температур от —80° до 120° С, дают большие выходы полимеров за короткое время.

При поликонденсации два или несколько различных мономеров реагируют, образуя цепь. При этом от их молекул отщепляются небольшие фрагменты, которые, соединяясь друг с другом, обычно образуют воду, т.е. в конечном полимерном продукте присутствуют не все атомы мономеров. Важное условие поликонденсации состоит в том, чтобы каждый мономер был бифункциональным, т.е. содержал две функциональные группы; обе они могут реагировать с функциональными группами другого компонента. Функциональные группы – это те части молекулы, которые непосредственно участвуют в химической реакции, т.е. места, где атомы, ионы, радикалы или другие группы могут либо отщепляться от молекулы, либо присоединяться к ней.

Например, гексаметилендиамин H

N (CH

)

NH

 имеет две аминогруппы NH

, поэтому его называют диамином. Адипиновая кислота HOOC (CH

)

COOH имеет две карбоксильные группы COOH, поэтому ее называют дикарбоновой или двухосновной кислотой. В реакции поликонденсации, типичной для всех диаминов и двухосновных кислот, гексаметилендиамин и адипиновая кислота, отщепляя воду, образуют цепь:

Реакция на этом не заканчивается, поскольку образующиеся промежуточные соединения также бифункциональны и могут реагировать с мономерами или друг с другом. Конечным результатом являются длинные линейные цепи повторяющихся звеньев —HN (CH

)
<< 1 2 3 4 5 6 7 >>
На страницу:
3 из 7