Оценить:
 Рейтинг: 0

Искусственный интеллект – надежды и опасения

Автор
Год написания книги
2019
Теги
<< 1 2 3
На страницу:
3 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Человеческий мозг чрезвычайно сложен и представляет собой плод миллионов лет естественного отбора. В эпоху Винера понимание архитектуры мозга было элементарным и упрощенным. С тех пор все более чувствительные инструменты и методы визуализации показали, что мозг гораздо разнообразнее по структуре и сложнее по функциям, чем мог вообразить Винер. Недавно я спросил Томазо Поджо[25 - Американский когнитивист и кибернетик, директор центра биологического и компьютерного обучения МТИ.], одного из пионеров современной нейробиологии, способны ли, по его мнению, компьютеры с их быстрорастущей вычислительной мощностью вскоре имитировать функционирование человеческого мозга. «Ни в коем случае», – ответил он.

Последние достижения в области глубинного обучения и нейроморфных вычислений очень точно воспроизводят некоторые особенности человеческого интеллекта, деятельность коры головного мозга, где обрабатываются и распознаются образы. Эти достижения позволили компьютеру победить чемпионов мира по шахматам и по игре в го, что нельзя не признать выдающимся результатом, но мы по-прежнему далеки от того, чтобы компьютеризированный робот мог полноценно убираться в помещении. (Вообще-то, роботы, обладающие хотя бы подобием широкого диапазона гибких человеческих движений, еще далеки от совершенства; рекомендую почитать материалы по запросу «ошибки роботов». Роботы успешно справляются с прецизионной сваркой на сборочных линиях, но до сих пор не в состоянии завязать шнурки.)

Сама по себе мощность обработки информации не означает разнообразия способов такой обработки. Пусть мощность компьютеров росла экспоненциально, программы, с помощью которых работают компьютеры, часто вообще не развивались. Как правило, компании-разработчики программного обеспечения реагируют на рост вычислительной мощности добавлением «полезных» функций, которые нередко затрудняют использование этого программного обеспечения. Так, офисная программа Microsoft Word достигла некоего идеала в 1995 году и с тех пор медленно гибнет под «весом» дополнительной функциональности. Как только развитие по закону Мура начнет замедляться, разработчики программного обеспечения столкнутся с непростым выбором между эффективностью, скоростью и функциональностью.

Главный страх сторонников идеи сингулярности заключается в том, что по мере все большего вовлечения компьютеров в разработку собственного программного обеспечения они быстро начнут развивать себя ради достижения сверхчеловеческих вычислительных возможностей. Но практика машинного обучения показывает на движение в противоположном направлении. Чем мощнее и способнее к обучению становятся машины, тем усерднее они обучаются, как и люди, усваивая множество полезных уроков и зачастую под наблюдением учителей (людей и машин). Обучение для компьютеров оказывается столь же сложным и медленным процессом, каким оно является для подростков. Следовательно, системы, основанные на глубинном обучении, становятся все более, а не менее человекоподобными. Навыки, которые они привносят в обучение, не «лучше человеческих», но комплементарны человеческому обучению: компьютерные системы способны распознавать модели, недоступные людям, – и наоборот. Лучшие шахматисты мира – это не компьютеры и люди по отдельности, а люди, работающие вместе с компьютерами. Киберпространство действительно населено «злонамеренными» программами, но они в основном имеют форму вредоносных программ (malware) – вирусов, известных своей злобной бессмысленностью, а отнюдь не суперинтеллектом.

Винер и будущее

Винер отмечал, что экспоненциальный технический прогресс представляет собой относительно современное явление и несет благо не во всех своих проявлениях. Он рассматривал атомное оружие и создание ракет с ядерными боеголовками как стремление рода человеческого к самоубийству. Он сравнивал неудержимую эксплуатацию ресурсов планеты с безумным чаепитием из «Алисы в Стране чудес»: опустошая локальную среду, мы добиваемся прогресса и просто пересаживаемся дальше, принимаясь опустошать следующую. Оптимизм Винера в отношении разработки компьютеров и нейромеханических систем сдерживался пессимизмом по поводу применения этих инструментов авторитарными государствами, такими как Советский Союз, и стремления демократий, таких как Соединенные Штаты Америки, сделаться более авторитарными в противостоянии угрозе авторитаризма.

Что бы Винер подумал о нынешнем человеческом использовании человеческих существ? Его наверняка поразили бы мощность компьютеров и интернет. Он порадовался бы тому, что исходные нейронные сети, к созданию которых он был причастен, эволюционировали в мощные системы глубинного обучения, демонстрирующие те возможности восприятия, о каких когда-то мечтали (хотя, пожалуй, его вряд ли вдохновил бы тот факт, что одним из наиболее ярких примеров такого компьютеризированного гештальта сегодня является возможность распознавать фотографии котиков во Всемирной паутине). Вместо того чтобы расценивать машинный интеллект как угрозу, он, как я подозреваю, воспринял бы его как явление в своем праве, отличное от человеческого сознания, но развивающееся параллельно человеческому.

Нисколько не удивляясь глобальному потеплению, этому безумному чаепитию наших дней, Винер приветствовал бы экспоненциальное развитие технологий альтернативной энергии и наверняка использовал бы свой богатый кибернетический опыт для разработки сложных контуров обратной связи, необходимых для внедрения означенных технологий в будущую интеллектуальную электрическую сеть. Тем не менее, признавая, что решение проблем изменения климата зависит не только и не столько от технологий, сколько от политики, он, несомненно, испытывал бы пессимизм относительно наших шансов своевременно справиться с этой угрозой существованию цивилизации. Винер ненавидел торгашей – прежде всего торгашей от политики, – но сознавал, что нам от них никогда не избавиться.

Легко забыть, насколько страшным местом был мир эпохи Винера. Соединенные Штаты Америки и Советский Союз вели полномасштабную гонку вооружений, создавая водородные бомбы и ядерные боеголовки для межконтинентальных баллистических ракет, управляемых навигационными системами, которые отчасти разрабатывал сам Винер (чего он стыдился). Мне было четыре года, когда Винер умер. В 1964 году в начальной школе мы учились нырять под парты на случай ядерной атаки. Учитывая человеческое применение человеческих существ в ту эпоху, Винер, приведись ему увидеть нашу нынешнюю жизнь, в первую очередь порадовался бы тому, что мы до сих пор живы.

Глава 2

Ограничения «непрозрачных» обучаемых машин

В 1980-е годы Джуда Перл предложил новый подход к разработке искусственного интеллекта – на основании байесовских сетей. Эта вероятностная модель машинного мышления позволяла машинам функционировать – в сложном и неопределенном мире – в качестве «локомотивов доказательств», постоянно пересматривая свои убеждения в свете новых свидетельств.

Всего через несколько лет байесовские сети Перла целиком вытеснили предыдущие подходы к искусственному интеллекту, основанные на правилах. Появление методики глубинного обучения – когда компьютеры фактически самообучаются и становятся умнее, обрабатывая мириады данных, – поставило Джуду перед новым вызовом, ведь эта методика лишена прозрачности.

Признавая несомненные заслуги в области глубинного обучения таких коллег, как Майкл И. Джордан и Джеффри Хинтон[26 - М. Джордан – статистик и специалист по машинному обучению, профессор Калифорнийского университета в Беркли; Дж. Хинтон – британо-канадский когнитивист, ведущий научный сотрудник проекта Google Brain, где ведутся исследования ИИ на основе методов глубинного обучения.], Перл не готов мириться с указанной непрозрачностью. Он намеревается изучить теоретические ограничения систем глубинного обучения и утверждает, что существуют базовые препятствия, которые не позволят этим системам уподобиться человеческому интеллекту, что бы мы ни делали. Используя вычислительные преимущества байесовских сетей, Джуда осознал, что комбинация простых графических моделей и данных также может применяться для репрезентации и выведения причинно-следственных связей. Значение этого открытия намного превосходит исходный контекст исследований в сфере искусственного интеллекта. Последняя книга Перла[27 - Judea Perl. Causal Inference in Statistics: A Primer (with Madelyn Glymour and Nicholas Jewell). NY, Wiley, 2016. – Примеч. автора.] объясняет широкой публике суть каузального мышления; можно сказать, что это своего рода учебник для начинающих, которые хотят научиться мыслить, будучи людьми.

Принципиально математический подход к причинности (каузальности) представляет собой значительный вклад Перла в сферу идей. Обращение к этому подходу уже принесло пользу практически во всех областях исследований, в первую очередь в сфере цифровой медицины (data-intensive health – букв. информационно емкого здравоохранения) и социальных наук.

Как бывший физик, я всегда интересовался кибернетикой. Пусть она не использовала в полной мере всю мощь машин Тьюринга, кибернетика – чрезвычайно прозрачная область знаний, возможно, потому, что она опирается на классическую теорию управления и теорию информации. Сегодня мы постепенно теряем эту прозрачность в связи с углублением процессов машинного обучения. По сути, налицо подгонка кривой, когда происходит корректировка значений в промежуточных слоях длинной цепочки ввода-вывода.

Мне встречались многие пользователи, сообщавшие, что «все работает хорошо, но мы не знаем, почему так». Стоит применить такой подход к большим наборам данных, и глубинное обучение приобретает собственную динамику, самостоятельно регулируется и оптимизируется – и в большинстве случаев дает правильные результаты. Но когда этого не случается, никто не понимает, где именно допущена ошибка и что именно следует исправлять. Важнее всего то, что невозможно узнать, имеется ошибка в программе или методике – или каким-то образом изменилась среда. Поэтому нам нужна иная прозрачность.

Кое-кто заявляет, что в прозрачности на самом деле нет необходимости. Мы не понимаем нейронную архитектуру человеческого мозга, но она исправно функционирует, а потому мы прощаем себе наше скудное понимание и охотно пользуемся таким удобным подспорьем. Точно так же, утверждают некоторые, нужно просто применять системы глубинного обучения и создавать машинный интеллект, даже если мы не понимаем, как все это работает. Что ж, до определенной степени я могу согласиться с этим доводом. Лично мне непрозрачность не нравится, поэтому я не стану тратить свое время на глубинное обучение, но я знаю, что оно занимает некое место в структуре интеллекта. Я знаю, что непрозрачные системы способны творить настоящие чудеса, и наш мозг является тому убедительным доказательством.

Но этот довод имеет свои ограничения. Причина, по которой мы прощаем себе наше скудное понимание принципов работы человеческого мозга, заключается в том, что у разных людей мозг работает одинаково, и это позволяет нам общаться с другими людьми, учиться у них, обучать их и мотивировать на нашем родном языке. Будь все наши роботы такими же непрозрачными, как AlphaGo[28 - Компьютерная программа для игры в го, разработана в 2015 г.; получила дальнейшее развитие в программах AlphaGo Master, AlphaGo Zero и AlphaZero.], мы не сможем вести с ними содержательные беседы, что весьма печально. Нам придется переобучать их всякий раз, когда вносятся минимальные изменения в условия задачи или в операционную среду.

Потому, оставляя в стороне эксперименты с «непрозрачными» обучаемыми машинами, я пытаюсь понять их теоретические ограничения и исследовать, каким образом эти ограничения могут быть преодолены. Я изучаю этот вопрос в контексте причинно-следственных задач, которые во многом определяют воззрения ученых на мир и в то же время изобилуют примерами проявления интуиции, вследствие чего мы можем отслеживать прогресс в ходе анализа. В данном контексте мы обнаружили, что существуют некоторые базовые препятствия, которые, если их не преодолеть, не позволят создать подлинный аналог человеческого разума, что бы мы ни делали. Полагаю, подробное описание этих препятствий не менее важно, чем попытки взять их штурмом.

Современные системы машинного обучения работают почти исключительно в статистическом режиме (или режиме модельной слепоты), который во многом аналогичен помещению функции в облако элементов данных. Подобные системы не способны размышлять по принципу «что, если?», а значит, не могут выступать основанием для «сильного» ИИ, то есть для искусственного интеллекта, который имитирует человеческие мышление и компетентность. Чтобы достичь человеческой разумности, обучаемые машины должны руководствоваться своего рода калькой с реальности, моделью наподобие дорожной карты, по которой мы ориентируемся, перемещаясь по незнакомому городу.

Точнее сказать, современные обучаемые машины улучшают свою производительность, оптимизируя параметры потока сенсорных входящих данных, получаемых из окружающей среды. Это небыстрый процесс, аналогичный естественному отбору, который движет дарвиновской эволюцией. Последняя объясняет, как такие виды, как орлы и змеи, обрели превосходное зрение за миллионы лет развития. Однако она не в состоянии объяснить сверхэволюционные процессы, которые позволили людям изобрести и начать производить очки и телескопы всего за какую-то тысячу лет. Люди обладают тем, чего лишены другие виды, а именно ментальными репрезентациями окружающей среды – репрезентациями, которыми возможно манипулировать по желанию, дабы воображать различные альтернативные и гипотетические среды в целях планирования и обучения.

Историки рода Homo Sapiens, скажем Юваль Ной Харари и Стивен Митен[29 - Ю. Харари – израильский историк, автор научно-популярного бестселлера «Sapiens: Краткая история человечества» (2011, рус. пер. 2016); С. Митен – английский археолог и популяризатор науки, автор книги «После ледникового периода: общая история человечества» (2003).], в целом согласны с тем, что решающим фактором, который обеспечил нашим предкам глобальное господство на планете около сорока тысяч лет назад, была способность создавать и хранить ментальные репрезентации окружающей среды, обращаться к этим репрезентациям, искажать их посредством актов воображения и, наконец, отвечать на вопросы типа «Что, если?». Примерами могут служить вопросы интервенционные («Что, если я сделаю то-то и то-то?») и ретроспективные, или контрфактивные («Что, если бы я поступил иначе?»). Ни одна обучаемая машина в наши дни не способна давать ответы на такие вопросы. Более того, большинство обучаемых машин не обладают репрезентациями, из которых можно вывести ответы на подобные вопросы.

Отталкиваясь от причинно-следственного мышления, можно сказать, что для нас почти бесполезны любые формы подгонки кривых, модельной слепоты или статистического вывода, сколь бы сложным ни был процесс подгонки. Мы также выявили теоретические рамки для структурирования указанных ограничений по иерархическому признаку.

На первом уровне находится статистическое мышление, которое способно сообщить лишь о том, как наблюдение одного события изменит ваши взгляды на другие события. Например, что симптом может рассказать о болезни?

Далее располагается второй уровень, который опирается на первый, но не наоборот. Здесь помещаются действия. «Что будет, если мы поднимем цены?» «Что, если ты меня рассмешишь?» Этот второй уровень иерархии требует информации о вмешательствах, недоступной на первом уровне. Данную информацию можно закодировать в графическую модель, которая будет уведомлять, какие переменные реагируют на другие.

Третий уровень иерархии является контрфактуальным. Это язык, употребляемый учеными. «Что, если объект будет вдвое тяжелее?» «Что, если я поступлю иначе?» «Это от аспирина у меня перестала болеть голова или все дело в том, что я пошел спать?» Контрфактуальность занимает верхний уровень с той точки зрения, что ее невозможно вывести логически, даже умей мы предсказывать и предугадывать последствия всех своих действий. Тут необходим дополнительный элемент в форме уравнений, чтобы поведать нам, как переменные реагируют на изменения других переменных.

Одним из венчающих труды достижений в исследованиях причинно-следственных связей является алгоритмизация вмешательств и контрфактуальностей, то есть двух верхних уровней нашей иерархии. Иными словами, когда мы закодировали наше научное знание в модели (пусть даже качественной), налицо алгоритмы, позволяющие изучить модель и определить, возможно ли воспринять конкретный запрос, будь то вмешательство или контрфактуальность, на основе имеющихся данных (а если возможно, то как именно). Эта возможность кардинально изменила само занятие наукой, особенно в таких наукоемких дисциплинах, как социология и эпидемиология, где каузальные модели успели стать вторым языком. Указанные дисциплины трактуют описанную лингвистическую трансформацию как каузальную революцию. Цитируя социолога из Гарварда Гэри Кинга: «За последние несколько десятилетий о причинно-следственных связях стало известно намного больше, чем за всю предшествующую историю вопроса».

Размышляя об успехах машинного обучения и пытаясь экстраполировать их на будущее ИИ, я спрашиваю себя: «Известны ли нам базовые ограничения, которые были обнаружены в области причинно-следственных связей? Готовы ли мы преодолеть теоретические препятствия, мешающие нам переходить с одного уровня иерархии на другой?»

Я рассматриваю машинное обучение как инструмент, позволяющий перейти от данных к вероятностям. Но тогда следует сделать два дополнительных шага, чтобы перейти от вероятностей к реальному пониманию, – два больших шага. Один заключается в том, чтобы предсказывать последствия действий, а второй состоит в освоении контрфактуального воображения. Мы не вправе утверждать, что постигли реальность, если не сделаем эти два шага.

В своей блестящей и проницательной работе «Предвидение и понимание» (1961) философ Стивен Тулмин определил противостояние прозрачности и непрозрачности как ключевое условие осознания сути древнего соперничества между греческими и вавилонскими науками. Согласно Тулмину, вавилонские астрономы были мастерами предсказаний по «черному ящику» и сильно превосходили своих греческих соперников по точности и последовательности небесных наблюдений. Тем не менее наука предпочла креативно-умозрительную стратегию греческих астрономов, которая изобиловала метафорическими образами: круглые трубы, полные огня; малые отверстия, сквозь которые сияет небесный огонь (звезды); полусферическая Земля на спине гигантской черепахи… Именно эта безумная стратегия моделирования, а вовсе не вавилонские экстраполяции, побудила Эратосфена (276–194 годы до н. э.) предпринять один из наиболее творческих экспериментов Античности и вычислить окружность Земли. Подобный эксперимент был попросту невозможен среди вавилонских собирателей данных.

Модельная слепота накладывает внутренние ограничения на когнитивные задачи, которые способен выполнять «сильный» ИИ. Мой общий вывод состоит в том, что сопоставимый с человеческим ИИ нельзя создать только на основе машины с модельной слепотой; он требует симбиотического сотрудничества данных и моделей.

Наука о данных является наукой лишь в той мере, в какой она облегчает интерпретацию данных, – перед нами задача двух тел, связь данных и реальности. Данные сами по себе вряд ли окажутся наукой, какими бы «большими» они ни были и насколько бы искусно ими ни манипулировали. Непрозрачные обучаемые системы могут привести нас в Вавилон, но не в Афины.

Глава 3

Цель, заложенная в машину

Ученый-компьютерщик Стюарт Рассел, наряду с Илоном Маском, Стивеном Хокингом, Максом Тегмарком и многими другими, настаивает на том, что следует уделять повышенное внимание тем потенциальным опасностям, которые сулит создание интеллекта сверхчеловеческого (или даже человеческого) уровня – так называемого ОИИ, общего искусственного интеллекта, чьи запрограммированные цели вовсе не обязательно будут совпадать с нашими собственными.

Ранние работы Рассела были посвящены описанию гипотезы «ограниченной оптимальности» как формального операционального определения интеллекта. Он разработал метод рационального метарассуждения, «суть которого, грубо говоря, заключается в том, что вы выполняете вычисления, которые, по вашим ожиданиям, улучшат качество итогового решения в максимально короткие сроки». Также Стюарт приложил руку к комбинированию теории вероятности с логикой первого порядка, благодаря чему возникла новая и гораздо более эффективная система мониторинга соблюдения условий договора о всеобъемлющем запрещении ядерных испытаний, и к задаче принятия долгосрочных решений (сам он предпочитает давать презентациям по последней теме названия вроде «Жизнь: играть и выигрывать за 20 триллионов ходов»).


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3
На страницу:
3 из 3