Оценить:
 Рейтинг: 0

Невозможность второго рода. Невероятные поиски новой формы вещества

Год написания книги
2019
Теги
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
5 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля
Треугольниками можно покрыть пол не периодически, если, например, расположить их в форме спирали, как показано на иллюстрации внизу слева. Однако из треугольников можно также выстроить периодическое замощение, показанное внизу справа. Поэтому треугольники не являются решением поставленной задачи.

Когда-то математики считали, что невозможно найти фигуру или комбинацию фигур, которая будет удовлетворять этим требованиям. Однако в 1964 году математик Роберт Бергер сконструировал корректный пример, в котором использовалось 20426 различных форм плиток. С течением времени другим удалось найти примеры с использованием намного меньшего числа плиток различной формы.

В 1974 году Пенроуз совершил большой прорыв, когда нашел решение задачи с использованием всего двух плиток разной формы, которые он назвал “змеями” и “дротиками” (kites и darts; см. вверху). На каждой из этих плиток нарисована дуга окружности, или “лента”. Пенроуз ввел правило, согласно которому две плитки можно прикладывать друг к другу сторонами, только если ленты на обеих сторонах общего ребра состыковываются. Следование этому “правилу совмещения” не позволяет плиткам складываться в какой-либо регулярно повторяющийся рисунок. Замощение, представленное выше, демонстрирует сложный рисунок, образуемый лентой, когда много змеев и дротиков прикладываются друг к другу в соответствии с пенроузовским правилом совмещения.

Филадельфия, октябрь 1981 года

В статье Гарднера описывалось множество открытых Пенроузом удивительных особенностей его оригинальных замощений, а также их дополнительные свойства, открытые позднее его другом, математиком Джоном Конвеем из Кембриджского университета.

Конвею принадлежит бессчетное множество результатов в теории чисел, теории групп, теории узлов, теории игр и других фундаментальных областях математики. Например, именно он изобрел игру “Жизнь” – знаменитую математическую модель (так называемый клеточный автомат), где реализуются некоторые аспекты самовоспроизводящихся машин и биологической эволюции.

Когда Пенроуз познакомил Конвея с новыми замощениями, тот пришел в абсолютный восторг. Он немедленно начал вырезать фигуры из бумаги и картона, складывая их и заполняя столы и все остальные поверхности своего жилища различными сочетаниями вырезанных фигур, чтобы изучить их свойства. Статья Гарднера в Scientific American включала многие из важных фактов, обнаруженных Конвеем, что помогло нам с Довом прояснить для себя некоторые на первый взгляд неочевидные свойства пенроузовских замощений.

Читая другие статьи, мы узнали, что точная форма этих плиток неважна, покуда они соединяются друг с другом способом, эквивалентным змеям и дротикам. Версия, которую нам с Довом оказалось проще анализировать, состояла из пары ромбов – широкого и узкого. Именно эти четырехугольники были использованы для создания замощения, изображенного на следующей странице.

Из одних только широких ромбов можно сложить периодический узор, равно как и из одних только узких. Также из различных комбинаций этих двух фигур можно получить другие периодические замощения.

Однако использование ромбов – это еще не все. Чтобы полностью исключить возникновение периодичности, необходимо ввести некие правила совмещения. Один из возможных подходов состоит в том, чтобы использовать ленты по аналогии с теми, что придумал Пенроуз для своих змеев и дротиков, и установить правило, гласящее, что две плитки могут соединяться, только если на ребре, по которому они граничат, состыковываются их ленты.

Другой способ воспрепятствовать появлению обычного периодического рисунка состоит в замене прямых краев плиток кривыми или имеющими специальные выступы, подобно деталям пазла, – это отлично иллюстрирует замечательный пример паркета из индивидуальных деталей, изображенный справа. В смысле взаимного расположения плиток этот деревянный паркет эквивалентен замощению из серых и белых ромбов. Единственное отличие состоит в том, что на деревянные плитки добавлены замки?. Они позволяют деталям соединяться друг с другом, как в пазле, и исключают возможность выложить ими какой-либо периодический узор.

Если вы впервые видите замощение Пенроуза, уделите немного времени его изучению и оцените свое первое впечатление. Как бы вы могли его охарактеризовать? Видите ли вы в нем упорядоченный или неупорядоченный узор? Если вам кажется, что плитки следуют друг за другом в упорядоченной последовательности, то как предсказать, какая плитка окажется следующей?

Глядя на замощение из широких серых и узких белых ромбов, мы с Довом заметили определенные часто повторяющиеся мотивы, такие как звездообразные кластеры из пяти серых плиток, окружающих центральную точку, – чего трудно было бы ожидать для случайного узора. Но мы также заметили, что эти кластеры не повторяются через равные интервалы, как должно быть в периодическом рисунке. И в то же время расстояния между этими повторениями не выглядели произвольными, что было бы ожидаемо при случайном узоре.

Сравнивая конфигурации плиток, которые непосредственно окружают звездообразные кластеры, мы заметили, что не у всех звезд окружение совпадает. На следующем слое окружающих плиток мы обнаружили еще больше различий. Изучив рисунок на странице 58, вы сами можете их заметить. На самом деле ни у какой пары звезд не будет в точности одинакового окружения, если смотреть достаточно далеко от их центров.

Это было важно, поскольку, как мы с Довом знали, в периодических узорах такого не бывает. Каждая плитка в замощении квадратами всегда имеет в точности такое же окружение, как и любая другая, как бы далеко от центра построения мы ни заглядывали.

Этим простым наблюдением мы подтвердили, что узор Пенроуза не может быть периодическим. И все же узор, состоящий из кластеров, которые очень похожи между собой и часто повторяются в замощении, нельзя считать и случайным. Это привело нас к вопросу: что за узор может быть одновременно и не периодическим, и не случайным?

Готового ответа не было, и это меня по-настоящему заинтриговало. Никто не видел ничего подобного узору Пенроуза до того, как он придумал его в 1974 году. Даже сам Пенроуз, похоже, не в полной мере оценил значимость собственного открытия. В своей первой статье Пенроуз описывает узор как “непериодический”, четко показывая, чем его замощение не является. Но там нет ни слова о том, каким же оно на самом деле является. А для нас с Довом это было крайне принципиально.

Когда мы только начали изучать замощение Пенроуза, мы представляли себе, что сможем сконструировать аналогичный трехмерный узор, используя пару строительных блоков. Затем, заменив строительные блоки каждый формы определенным типом атомов или кластером атомов, мы надеялись построить атомную структуру, которая реализовала бы нашу мечту о новом типе вещества.

Однако прежде всего нам следовало убедиться в том, что новая атомная структура действительно является новой, и выделить ее особые физические свойства, а для этого требовалось определить ее симметрии. Просто описать новое вещество как непериодическое или неслучайное было недостаточно. Поэтому следующие несколько месяцев мы полностью посвятили замощению Пенроуза, чтобы понять, сможем ли мы открыть математический секрет его симметрий.

Первое удивительное свойство замощений Пенроуза, которое установили мы с Довом, состояло в том, что в них в слабой форме проявляется вращательная симметрия пятого порядка, которая, конечно, считалась невозможной.

Чтобы увидеть в замощении Пенроуза симметрию пятого порядка, требуется некоторое усилие. Вернемся к рисунку на странице 58 с замощением, составленным из широких серых и узких белых ромбических плиток. Уделите немного времени изучению плиток, которые непосредственно окружают любой из звездчатых кластеров. Их расположение представляется весьма сложным. Мысленно поверните его на одну пятую оборота, или на 72°. Совпадет ли конфигурация с той, что была вначале?

Если вы попробуете выполнить этот эксперимент, то обнаружите, что верным ответом будет “по-разному”. Для некоторых звезд ответ – твердое “нет”. Отбросьте их и выберите другие. Продолжайте, пока не найдете такой звездчатый кластер, для которого ответ будет “да”. Долго искать вам не придется.

Теперь рассмотрите второй слой плиток, окружающих выбранный вами звездчатый кластер. Повторите вращение на 72°, одну пятую часть полного оборота, и проверьте, выглядит ли эта конфигурация плиток, которая простирается теперь на два слоя от исходного звездчатого кластера, так же, как исходная.

И вновь для некоторых звезд ответом будет “нет”. Опять же проигнорируйте их и продолжайте поиск, пока не найдете один из тех более редких звездчатых кластеров, для которого ответом будет “да”. Теперь повторите этот процесс еще раз для этого подмножества, перейдя к трем слоям. И так далее.

Проверяя все больше и больше слоев, вы будете отбрасывать все больше и больше звездчатых кластеров, но обнаружите, что всегда остаются некоторые кластеры, сохраняющие симметрию пятого порядка. Эта процедура намного более трудоемкая, чем та, что требуется для проверки симметрии периодического замощения, но этого достаточно для доказательства того, что замощение Пенроуза обладает вращательной симметрией пятого порядка.

С использованием более сложных математических методов можно показать, что формально замощение Пенроуза обладает более чем пятым порядком симметрии. В действительности оно имеет симметрию десятого порядка. Но для нас с Довом разница между пятым и десятым порядком симметрии была неважна. В любом случае эта симметрия была строго запрещена математикой замощений и известными законами кристаллографии.

Отсюда вытекало лишь одно: в основании этих законов лежало ошибочное допущение, и на протяжении более чем двух столетий никто этого не замечал. Существовала некая лазейка. Едва осознав это, мы с Довом загорелись этой темой. Мы просто обязаны были найти эту лазейку.

Мы уже знали о правилах совмещения, загадочных замках, которые мешают плиткам складываться в какой-либо периодический узор. Правила совмещения означали, что плиткам дозволялось соединяться только в узоры с запрещенной симметрией пятого порядка.

С помощью моделей из шариков и проволоки мы с Довом уже начали конструировать аналогичную трехмерную структуру, состоящую из строительных блоков, каждый из которых представлял один или несколько атомов. Для нашей модели мы перевели замки Пенроуза в атомные связи, соединявшие атомы, предоставляемые одним из наших трехмерных строительных блоков, с атомами другого. Эти атомы естественным образом препятствовали бы затвердеванию в виде любого типа кристалла с регулярной периодической решеткой. Вместо этого атомы были бы вынуждены создавать искомый нами новый тип вещества с икосаэдрической симметрией.

Лично меня сильнее всего цепляла именно эта линия размышлений, поскольку я находился под большим влиянием воображаемого воннегутовского льда-девять, в котором новая компоновка молекул воды – лед-девять – была стабильнее обычного кристаллического льда. Новая форма вещества, за которой мы охотились, могла бы оказаться, если ее удастся найти, значительно более стабильным материалом, тверже обычных кристаллов. Но какого рода закономерность стояла за правилами совмещения?

Одна из подсказок состояла в том, что замощения Пенроуза подчиняются так называемому правилу дефляции. Каждый широкий и узкий ромб в замощении Пенроуза можно разделить на части меньшего размера, которые образуют другое замощение Пенроуза. На рисунке внизу исходное замощение показано жирными линиями. Способ разделения, или дефляции, каждой широкой и узкой плитки отмечен пунктиром. Как видно на рисунке, пунктирные линии соединяются и образуют новое замощение Пенроуза с бо?льшим количеством элементов.

Начав с небольшой группы плиток и повторяя процедуру дефляции, можно получить замощение Пенроуза с любым желаемым числом элементов. Обратный процесс, заменяющий группы плиток меньшего размера более крупными, называется правилом инфляции. Правила дефляции и инфляции доказали нам с Довом, что замощение Пенроуза обладает своего рода предсказуемой иерархической структурой.

Мы с Довом были убеждены, что сочетание симметрии пятого порядка, правил совмещения и правил дефляции-инфляции служит безошибочным свидетельством того, что пенроузовское размещение плиток является упорядоченным в новом, неинтуитивном смысле. Но каким именно порядком оно обладает?

Это не давало нам покоя. Мы с Довом знали, что если сумеем ответить на этот вопрос, то откроем путь в обход давно признанного закона, диктующего, какими типами симметрии может обладать вещество. А это может оказаться ключом к серьезному сдвигу парадигмы и открытию множества невиданных доселе материалов.

Но, ради всего святого, что же это за обходной путь? Мы оказались в тупике.

Глава 3

Обнаружение лазейки

Филадельфия, 1982–1983 годы

Важную подсказку, позволившую раскрыть секрет симметрии замощений Пенроуза, мы с Довом обнаружили в неопубликованной работе гениального математика-любителя по имени Роберт Амманн.

Он был необычным человеком, ведущим уединенный образ жизни. Способностей Амманна хватило для поступления в Университет Брандейса в середине 1960-х. Но отучился он только три года, в течение которых редко покидал свою комнату. В конце концов его отчислили, и он так никогда и не получил диплома.

В дальнейшем он самостоятельно освоил программирование компьютеров и нашел работу в области низкоуровневого программирования. К сожалению, он потерял место во время волны сокращений в компании. Тогда он стал сортировать корреспонденцию на почте, поскольку на этой работе не требовалось много общаться с людьми. Сослуживцы считали его предельно некоммуникабельным и замкнутым интровертом.

Вот только почтовые служащие наверняка не догадывались, что Амманн был настоящим математическим гением. В свободное от работы время он погружался в тот же мир развлекательной математики, что увлекал таких мэтров науки, как Роджер Пенроуз и Джон Конвей. С характерной скромностью Амманн описывал себя как “склонного к математике рисовальщика каракулей”.

Мы с Довом натолкнулись на идеи Амманна в двух коротких статьях в малоизвестных журналах, написанных Аланом Маккеем, кристаллографом и профессором материаловедения из Лондонского университета. Маккей разделял наше восхищение икосаэдром, замощениями Пенроуза и фантазиями о материалах с запрещенной симметрией пятого порядка. В этих двух статьях, напоминавших скорее спекулятивные эссе, нежели исследовательские работы, были изложены некоторые его важные соображения по этой теме. Они включали две иллюстрации, которые сразу вызвали у нас особый интерес.

На первой Маккей изобразил пару ромбоэдров – широкий и узкий, как показано на рисунке внизу. Нам с Довом эти трехмерные фигуры уже были хорошо знакомы. Это были очевидные трехмерные аналоги широких и узких ромбов, которые использовались для построения двумерных замощений Пенроуза. Так что, по-видимому, Маккей шел тем же путем, что и мы.

Однако мы были разочарованы, не обнаружив в его статье никаких правил совмещения, которые не давали бы трехмерным строительным блокам образовывать периодические кристаллические структуры. Для нас с Довом главной задачей был как раз поиск этих особых правил совмещения. Без них атомы могли бы по-прежнему соединяться в одну из нескольких обычных кристаллических структур, вместо того чтобы вынужденно образовывать невозможную структуру, которую мы надеялись открыть.

Нас также заинтриговала другая иллюстрация, опубликованная Маккеем (здесь не приводится). Это была фотография дифракционной картины, порожденной при прохождении лазерного луча через изображение замощения Пенроуза. На снимке Маккея было видно, что сложный дифракционный узор включает отдельные особенно яркие пятна, и некоторые из них расположены в углах десятиугольника, а некоторые другие – в углах пятиугольника. Однако мы не могли определить, четкие это точки или расплывчатые сгущения и расположены ли они вдоль идеально прямых линий.

Для физиков вроде нас с Довом эти детали были чрезвычайно важны. Четкие точки, выстроенные идеально прямыми рядами в сочетании с группами пятен, образующими правильные десятиугольники и пятиугольники, – это была бы невиданная прежде дифракционная картина. И главное, она указывала бы на такое расположение атомов, с которым никто еще не встречался.

Размытые пятна с неидеальным выравниванием были бы уже не столь захватывающими. Они указывали бы на сочетание порядка и беспорядка в расположении атомов, подобно тем структурам, которые мы уже изучали с Дэвидом Нельсоном, а не на новую форму вещества.

Разумеется, мы с Довом надеялись на первый вариант, который свидетельствовал бы о чем-то поистине новом. Мы связались с Маккеем, чтобы расспросить о правилах совмещения и точной математической природе дифракционной картины на его фото, однако у него не нашлось ответов на наши вопросы. По его словам, математика не была его сильной стороной. Поэтому он не знал, как доказать, были ли дифракционные пятна от замощения Пенроуза идеально четкими или расплывчатыми. Он также признался, что у него есть лишь одна фотография, и это было печально, поскольку на снимках всегда есть небольшие искажения. Так что у него не было уверенности относительно дифракционных свойств.

Маккей также сообщил нам, что широкие и узкие ромбоэдры в его статье не были его собственным изобретением. Он позаимствовал их непосредственно из работы одного малоизвестного любителя – Роберта Амманна. Именно тогда мы впервые услышали имя этого загадочного гения, который мало с кем общался, кроме гуру развлекательной математики Мартина Гарднера из Scientific American, к кому Маккей и посоветовал нам обратиться за помощью.

<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
5 из 9