Оценить:
 Рейтинг: 0

Невозможность второго рода. Невероятные поиски новой формы вещества

Год написания книги
2019
Теги
<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
6 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля
Дов немедленно написал Гарднеру, а тот, в свою очередь, отправил нас к Бранко Грюнбауму и Джеффри Шепарду, которые как раз готовили к выпуску книгу о замощениях, куда вошли некоторые из гениальных изобретений Амманна. От них мы узнали, что Амманн независимо изобрел ромбоидные плитки, похожие на открытые Пенроузом, с правилами совмещения, вынуждающими к образованию симметрии пятого порядка. Что еще поразительнее, он также изобрел другой набор плиток с правилами совмещения, вынуждающими к столь же невозможной симметрии восьмого порядка.

У Амманна не было математического образования, поэтому он не предоставил никаких доказательств того, что его правила совмещения работают, и даже не описал свои результаты в научной статье. Он просто интуитивно знал, что прав.

Гарднер также предоставил нам заметки Амманна, в которых подробно излагались его соображения о строительных блоках с икосаэдрической симметрией. Но и тут не было ни строгих доказательств, ни даже попыток привести убедительные аргументы.

Несколько лет спустя мы с Довом смогли разыскать неуловимого гения в окрестностях Бостона и уговорили его приехать к нам в Филадельфию. Амманн оказался именно таким, каким я его себе и представлял. Он был полон творческих геометрических идей и захватывающих предположений, которые никогда не публиковались, но очень часто оказывались верными. Некоторые из них, как, например, идея ромбоэдров, впервые появившаяся на иллюстрации Маккея, были открыты независимо нами с Довом ценой тяжелого труда и утомительного поиска доказательств. Для Амманна все это было попросту интуитивно очевидно. К сожалению, несколько лет спустя его не стало, так что нам с Довом не довелось больше с ним увидеться.

Самым важным его изобретением, на наш с Довом взгляд, было введение названных его именем полос Амманна – могучего и действенного правила совмещения. На широких и узких ромбах с прямыми сторонами Амманн рисовал набор полосок в соответствии со строгим рецептом, проиллюстрированным пунктирными линиями на рисунке вверху.

Правило совмещения Амманна состоит в том, что две плитки можно соединять между собой только в том случае, если на всех краях, которыми они стыкуются, нанесенные на них полосы продолжают друг друга. Это накладывает того же типа ограничения, что и пенроузовские ленты и замки. Так что на первый взгляд тут нет ничего примечательного.

Однако при более внимательном анализе становится ясно, что полосы Амманна все меняют. Мы с Довом обнаружили, что они выявляют в замощениях Пенроуза нечто такое, чего сам Пенроуз не заметил. И именно это забросило нас с Довом в странный новый мир невозможных симметрий.

Мы видели, что при стыковке плиток в соответствии с правилом совмещения отдельные полосы Амманна соединяются и образуют прямые линии Амманна, которые тянутся через все замощение. Ниже изображено замощение, поверх которого наложена система линий Амманна. Этот массив состоит из пяти наборов параллельных линий, ориентированных под разными углами.

Мы с Довом обнаружили, что все эти пять наборов прямых одинаковы и повернуты друг к другу под такими же в точности углами, как стороны правильного пятиугольника. Нельзя было и представить себе более простого доказательства наличия у данного замощения симметрии пятого порядка.

Для нас с Довом это был поистине захватывающий момент. Теперь мы точно знали, что находимся на пути к открытию, которое прямо противоречит столетним теоремам Гаюи и Браве. Мы были уверены, что линии Амманна таят в себе ключ к обходу этих надежно доказанных теорем и к объяснению секрета симметрии замощений Пенроуза. Но нам еще только предстояло расшифровать их смысл.

Важнее всего оказалось сосредоточиться лишь на одном из пяти наборов прямых линий, например на том, который выделен на рисунке справа. Видно, что просветы между этими параллельными линиями Амманна бывают двух размеров – широкие (W) и узкие (N). Для нас самыми важными были две величины: отношение между ширинами этих двух типов просветов и частота, с которой они повторяются на рисунке. Мы были на пороге открытия того, что эти две величины – отношение и последовательность – связаны с двумя знаменитыми математическими понятиями: золотым сечением и числами Фибоначчи.

Золотое сечение часто обнаруживается в природе и с древних времен встречается в искусстве. Считается, что египтяне руководствовались им при строительстве великих пирамид. В V веке до нашей эры греческий скульптор и математик Фидий утверждал, что применял золотое сечение при создании Парфенона в Афинах, который сегодня считается величайшим памятником греческой цивилизации. В память о Фидии это отношение часто обозначают греческой буквой ? (произносится как “фи”).

Греческому математику Евклиду, которого считают отцом геометрии, принадлежит самое раннее сохранившееся определение золотого сечения с использованием простых объектов. Он рассматривал способы разделить палку на две части таким образом, чтобы соотношение короткого и длинного кусков было равно соотношению длинного и их суммарной длины. Найденное Евклидом решение состоит в том, что более длинный кусок должен быть ровно в ? раз больше короткого, где ? равно

и выражается бесконечной неповторяющейся последовательностью десятичных цифр.

Числа, представляемые бесконечными непериодическими десятичными дробями, называются иррациональными, поскольку их нельзя выразить отношением двух целых чисел. Это отличает их от рациональных чисел, таких как 1/3 или 143/548, которые представляют собой отношения целых чисел и в десятичной форме записываются как 0,333… и 0,26094890510948905109… соответственно, то есть содержат периодически повторяющиеся последовательности цифр, если вычислить достаточное их количество.

Впрочем, появление золотого сечения в симметрии пятого порядка в замощении Пенроуза не то чтобы сильно поразило нас с Довом, поскольку это соотношение напрямую связано с геометрией пятиугольника. Например, на левом рисунке внизу отношение длины верхнего отрезка, соединяющего противоположные вершины пятиугольника, к длине одной из его сторон равно золотому сечению. Икосаэдр, изображенный справа, также заключает в себе золотое сечение: его двенадцать вершин образуют три взаимно перпендикулярных прямоугольника, у каждого из которых отношение длины к ширине равно золотому сечению.

По-настоящему удивило нас с Довом то, что мы обнаружили золотое сечение также и в чередовании широких (W) и узких (N) просветов.

Рассмотрим последовательность просветов W и N на рисунке со страницы 71. В ней нет никакого регулярного повторения. Если вы станете подсчитывать количество W и N, следя за соотношением этих чисел, то после учета первых трех просветов получите отношение 2 к 1, после первых пяти – 3 к 2, после первых восьми – 5 к 3 и так далее.

Есть простое арифметическое правило, которое порождает эту последовательность. Возьмем первое отношение – 2 к 1. Сложим эти два числа (2 + 1 = 3) и затем сравним сумму (3) с большим из двух исходных чисел (2). Получится новое отношение – 3 к 2, которое также оказывается очередным в последовательности, полученной для просветов. Сложим следующие два числа (3 + 2 = 5) и снова сравним результат с большим из двух предыдущих чисел – получим отношение 5 к 3.

Этот процесс можно продолжать бесконечно, получая соотношения 8 к 5, 13 к 8, 21 к 13, 34 к 21, 55 к 34 и так далее. Эти соотношения будут в точности предсказывать последовательность для амманновских просветов.

Мы с Довом сразу узнали эту последовательность целых чисел: 1, 2, 3, 5, 8, 13, 21, 34, 55, … Она известна как числа Фибоначчи и названа в честь итальянского математика Леонардо Фибоначчи, жившего в Пизе в XIII веке.

Отношения последовательных чисел Фибоначчи – 2:1, 3:2, 5:3, … – это отношения целых чисел, а значит, они рациональные. Однако знаменитое свойство последовательности Фибоначчи состоит в том, что чем больше становятся целые числа, тем ближе их отношение подходит к золотому сечению. Такова его связь с числами Фибоначчи.

Как оказалось, единственный способ получить такое чередование W и N, которое воспроизводит числа Фибоначчи, состоит в том, чтобы по мере распространения замощения Пенроуза по всем направлениям просветы W повторялись с большей частотой, чем N, в соотношении, в точности равном золотому сечению – иррациональному числу. Если коротко, то именно в этом и состоит секрет замощения Пенроуза.

Последовательность, состоящая из двух элементов, повторяющихся с разными частотами, отношение которых выражается иррациональным числом, называется квазипериодической. Квазипериодическая последовательность никогда не повторяется в точности.

Например, нет таких двух просветов в последовательности Фибоначчи, которые были бы окружены одинаково расположенными наборами просветов с ширинами W и N, хотя в некоторых случаях надо зайти достаточно далеко, чтобы обнаружить различия. То же относится и к плиткам Пенроуза. Отследите замощение достаточно далеко, и вы обнаружите, что никакие две плитки не будут окружены в точности одинаковой конфигурацией других.

Наконец-то мы с Довом поняли, где именно пролегает путь в обход вековых правил Гаюи и Браве. Фундаментальная теорема кристаллографии гласит: если схема расположения плиток или атомов является периодической, повторяющейся с одной определенной частотой, то возможны только некоторые симметрии. В частности, симметрия пятого порядка по любому направлению совершенно невозможна для периодических конфигураций атомов. Тут следует говорить о невозможности первого рода, то есть об абсолютно непреложной истине, подобно тому как 1 + 1 ни при каких условиях не может дать 3.

Однако, когда ученые уверяли целые поколения студентов, что симметрия пятого порядка невозможна ни для какого типа материи, это был уже пример невозможности второго рода – такое утверждение опиралось на допущение, которое не всегда корректно. В данном случае физики и материаловеды безосновательно полагали, что все упорядоченные конфигурации атомов являются периодическими.

Как стало ясно нам с Довом, замощение Пенроуза – это геометрический пример упорядоченной конфигурации, которая не является периодической. Это квазипериодический порядок плиток или атомов, который описывается двумя различными частотами повторения с иррациональным отношением между ними. Это и была наша заветная лазейка. Прежде ученые считали, что атомы в веществе всегда располагаются либо периодически, либо беспорядочно. Они никогда не рассматривали квазипериодические конфигурации.

Если настоящие атомы могли каким-то образом организоваться в структуру, которая повторяется с двумя разными частотами, находящимися в иррациональном соотношении, то получилась бы совершенно новая форма вещества, которая пошатнула бы устоявшиеся правила Гаюи и Браве.

Эта концепция казалась очень простой и вместе с тем невероятно глубокой. Перед нами с Довом словно открылось магическое окно, заглянуть в которое могли только мы.

Я знал, что там, вдали, открывается целое поле потенциальных новых прорывов. И пока все это поле могли исследовать мы и только мы.

Глава 4

История о двух лабораториях

Сами того не подозревая, мы с Довом тогда включились в гонку на время. После того как мы обнаружили, что квазипериодический порядок открывает секрет создания вещества с запрещенными симметриями, мы занялись разработкой теории этой новой формы вещества в естественном для нас темпе.

Мы и подумать не могли, что какой-то другой физик-теоретик решит заняться той же темой. Наш своеобразный подход, вдохновленный развлекательной математикой и замощениями, был слишком нетрадиционным, чтобы его можно было независимо повторить. Мы тогда еще не публиковали своих идей, так что никто не мог оттолкнуться от них и обогнать нас. Это не говоря уже об экспериментаторах, ничего не слышавших о нашей квазикристаллической теории, – разве могли они составить нам конкуренцию? Это казалось невозможным.

Единственное, чего мы не учли, – это случайного, серендипического открытия. Иногда простые эксперименты дают непредвиденные результаты. Если толковый экспериментатор обратит на это внимание, то у него появится шанс совершить научный прорыв. Оказалось, что, пока мы с Довом систематически разрабатывали нашу радикальную теорию, никому не известный ученый по имени Дэн Шехтман, работавший в лаборатории менее чем в 250 километрах от нас, случайно столкнулся с бессмысленными на первый взгляд результатами одного эксперимента.

То было поразительное совпадение, заслуживающее особого примечания в истории науки. Две команды, ничего не знавшие друг о друге, одновременно решили поставить под сомнение твердые, проверенные столетиями принципы. Прошло целых два года, прежде чем наши группы впервые услышали друг о друге. И когда это случилось, мы быстро выяснили, что для достижения наших целей мы с ними нуждались во взаимопомощи.

Филадельфия, 1983–1984 годы

Мы с Довом встречались почти каждый день для работы над нашей теорией. Первым делом мы сосредоточились на том, чтобы понять, как можно было использовать квазипериодическое упорядочение – открытую нами лазейку в законах кристаллографии. Нашей целью было создание с ее помощью трехмерной структуры с запрещенной симметрией икосаэдра. Задача была амбициозная, однако, если показать возможность существования такой геометрической структуры, можно было бы начинать думать о том, как организовать в нее реальные атомы и молекулы.

Звучало почти безумно. Однако это была та самая идея, которая двигала мной с самого начала – и когда я подростком вдохновлялся льдом-девять Курта Воннегута, и когда годы спустя в нашем с Дэвидом Нельсоном исследовании быстро охлаждаемых жидкостей появились загадочные намеки на запрещенные симметрии.

Открытие Роджером Пенроузом особых фигур со специальными замками, порождающих изощренные узоры, было большим научным достижением. Но стоящая перед нами задача повторить то же самое в трех измерениях была во многих отношениях еще сложнее.

Икосаэдр, как и любой другой трехмерный объект, обладает разными вращательными симметриями относительно разных осей. Запрещенная симметрия пятого порядка проявляется для шести различных направлений. Если смотреть вдоль других направлений, то проявляются симметрии второго и третьего порядка.

Мы с Довом начали работать с ромбоэдрами – трехмерными аналогами ромбов, которые Пенроуз использовал для своих плоских замощений. Мы знали, что из ромбоэдров можно составить периодическое заполнение пространства, что было открыто Гаюи более двухсот лет назад при изучении исландского шпата. Однако Пенроуз нашел для своих ромбов замки, которые позволяли исключить образование любого периодического узора. Замки вынуждали его узкие и широкие ромбы упорядочиваться квазипериодически. Нам надо было убедиться, что то же самое сработает и для широких и узких ромбоэдров. Нам с Довом понадобилось для этого вдвое больше элементов, чем Пенроузу, – два широких ромбоэдра и два узких, у каждого из которых были свои уникальные замки. Больше фигур, больше замков – больше сложностей.

Мы последовали своей обычной практике – стали конструировать физические модели изучаемых абстрактных, теоретических объектов, чтобы визуализировать структуру. Так что мой кабинет вновь превратился в забавную поделочную мастерскую.

Меньшей проблемой было изготовление двух типов строительных блоков. Мы делали картонные развертки широких и узких ромбоэдров, из которых составлялись четыре типа блоков – два узких и два широких. Мы склеивали их липкой лентой согласно принятым нами правилам совмещения, но все это превращалось в один сплошной липкий кошмар. Так что мы закатали рукава и приклеили магниты по углам всех наших картонных разверток. Магниты располагались как раз так, чтобы исполнять роль замков. Благодаря этому блоки соединялись друг с другом только в том случае, если соблюдались правила для трехмерных замков. Это был высокоорганизованный хаос, по крайней мере, так я говорил озадаченным посетителям моего кабинета.

Фотографии некоторых из наших конструкций представлены на иллюстрации выше. Слева вверху – группа из десяти широких и десяти узких ромбоэдров, образующих почти сферическую форму.

Внешняя поверхность этой группы носит труднопроизносимое название – ромботриаконтаэдр, что по-гречески означает “тридцать граней одинаковой ромбической формы на поверхности”.

На среднем изображении из модели удален тонкий ромбоэдр, чтобы частично приоткрыть ее внутреннее устройство. На правом для лучшего обзора удален еще и широкий ромбоэдр.

Ромботриаконтаэдр был первым шагом на пути к демонстрации упаковки широких и узких ромбоэдров в квазипериодическое построение сколь угодно большого размера при сохранении икосаэдрической симметрии. Не менее важным было отсутствие зазоров между строительными блоками (ромбоэдрами) и тот факт, что наши новые замки запрещали им формировать любые иные типы структур, включая обыкновенную периодическую кристаллическую решетку.

Теперь, когда мы убедились в том, что трехмерные квазикристаллы теоретически возможны, нам требовалось найти группы атомов, способные соединяться между собой аналогичным образом, то есть по тем же правилам совмещения, при которых квазикристалл был бы единственным возможным результатом.

<< 1 2 3 4 5 6 7 8 9 >>
На страницу:
6 из 9