Применение элементов искусственного интеллекта в решении прикладных задач
Сергей Сергеевич Павлов
Вадим Николаевич Шмаль
Sergey Pavlov, master Plekhanov Russian University of Economics.
Vadim Shmal, Ph. D., associate professor Russian University of Transport (MIIT).
Применение элементов искусственного интеллекта в решении прикладных задач
Учебник
Сергей Павлов
Вадим Шмаль
© Сергей Павлов, 2022
© Вадим Шмаль, 2022
ISBN 978-5-0059-3954-8
Создано в интеллектуальной издательской системе Ridero
Введение
Различные подобласти исследований ИИ сосредоточены вокруг конкретных целей и использования определенных инструментов. Традиционные цели исследований ИИ включают рассуждение, представление знаний, планирование, обучение, обработку естественного языка, восприятие. Общий интеллект (способность решать произвольные задачи) является одной из долгосрочных целей в этой области. Для решения этих проблем исследователи ИИ адаптировали и интегрировали широкий спектр методов решения проблем, включая поиск и математическую оптимизацию, формальную логику, искусственные нейронные сети и методы, основанные на статистике, вероятности и экономике. ИИ также опирается на информатику, психологию, лингвистику, философию и многие другие области. Не существует единой системы ИИ, которая решает все задачи или решает их эффективно.
Ключевым преимуществом ИИ является его способность решать проблемы в реальном мире. Но, есть также много потенциальных проблем. Важной задачей в области ИИ является определение того, какие из возможных проблем с наибольшей вероятностью могут быть решены с помощью ИИ, а какие требуют различных методов. Некоторыми из основных областей, которые способствуют решению сложных проблем ИИ, являются теория, инженерия и математика. Хотя большинство исследователей ИИ считают, что ИИ сыграет важную роль в будущем экономическом и технологическом развитии, есть много скептиков. Их скептицизм включает в себя опасения по поводу возможного неправильного использования ИИ, опасения по поводу его негативного воздействия и неуверенность в способности ИИ решать настоящие проблемы. Однако этот спор не единственный в этой области. Многие исследователи ИИ считают, что невозможно предсказать, какие из задач будут решаться ИИ в будущем. Причины этого заключаются в том, что, хотя в реальном мире необходимо решить множество важных проблем, не существует единого механизма или технологии, решающих их все.
Что такое ИИ?
На высоком уровне ИИ – это понятие вычислительных систем, которые работают со все большей и большей сложностью, чтобы понимать, прогнозировать и решать проблемы в реальном мире. Это определение ИИ является определением интеллекта и не ограничивается компьютерными системами.
ИИ – это область исследований, которая фокусируется на создании интеллектуальных машин, устройств, систем, алгоритмов и так далее. Компьютеры лежат в основе ИИ, а интеллектуальная машина спроектирована таким образом, чтобы она могла эффективно решать проблемы в реальном мире.
Для решения подобных задач можно использовать множество различных алгоритмов и интеллектуальных систем. Машина может быть разумной, если она может выполнять интеллектуальные задачи – эта концепция отличается от системы ИИ, которая имеет определенный набор правил, включая способность учиться, учиться выполнять интеллектуальные задачи, а также иметь долговременную память. Все виды алгоритмов можно использовать для решения интеллектуальных задач – научиться вести себя, обнаруживать закономерности и отличать реальный мир от его симуляций.
Исследователи ИИ считают, что все интеллектуальные системы можно улучшить, улучшив их способность выполнять интеллектуальные задачи – это называется алгоритмическим интеллектом или способностью машины к обучению. Однако в этой области существуют некоторые разногласия по поводу определения интеллектуальных машин, а также надежности и надежности существующих методов проектирования и улучшения интеллектуальных систем.
Эволюция ИИ
Путь от конкретной проблемы к решению ИИ называется процессом «машинного обучения». Примеры алгоритмов машинного обучения включают машинное обучение в форме нейронных сетей, которые могут идентифицировать закономерности в реальном мире и системы классификации, которые могут идентифицировать различные объекты в заданном наборе изображений.
Одной из важных особенностей ИИ является то, что качество предсказаний можно улучшить, изменив параметры (которые называются «признаками») и набор данных (в случае алгоритмов классификации). Например, в случае алгоритмов классификации, если набор данных основан на идентификации разных цветов, то при изменении набора данных прогнозы изменятся и могут лучше предсказывать цвета. Эта особенность машинного обучения играет ключевую роль в понимании точности алгоритмов ИИ.
ИИ – это динамичная и быстро развивающаяся область исследований с широким спектром различных приложений. Существует несколько интерпретаций ИИ. ИИ – это не отдельная технология, а целый ряд технологий, в частности, машинное обучение, искусственные нейронные сети, крупномасштабные распределенные системы и так далее. В частности, машинное обучение и глубокое обучение – это два разных термина, используемых в разных дисциплинах. Машинное обучение – это метод применения алгоритмов машинного обучения в машине, которая требует любого рода входных данных, например, в автомобиле, который будет водить сам себя.
Концепция ИИ
ИИ обычно используется для описания технологии, которая использует принципы обработки информации и управления информацией, такие как вычисление, хранение, маршрутизация и обработка входных сигналов или информации для интеллектуальных прогнозов или решений – это называется искусственным интеллектом. ИИ имеет разные определения, основанные на различных областях исследования и различных приложениях.
Системы ИИ могут быть интеллектуальными тремя различными способами:
1. Обучение: системы ИИ могут научиться распознавать закономерности в реальном мире и классифицировать их. Например, системы искусственного интеллекта могут распознавать закономерности в изображениях и классифицировать их в соответствии с их особенностями.
2. Интеллект: системы ИИ могут быть интеллектуальными, если они понимают процессы, участвующие в процессе принятия решений или во взаимодействии между человеком и интеллектуальной системой.
3. Рассуждение: системы ИИ также могут рассуждать, используя различные входные данные – например, системы ИИ могут понимать правила, которые делают логический вывод. Например, системы ИИ могут понять, как человек учится, основываясь на определенной логике, и анализировать эту логику, чтобы предсказать лучшую стратегию обучения.
Передовые методы машинного обучения будут использоваться для улучшения систем ИИ и принятия более эффективных решений. Например, системы ИИ могут изучать логическую структуру с помощью таких понятий, как восприятие, решение, действие и т. д. Затем они могут начать учиться действовать на основе логики. Фактически, системы ИИ могут учиться как на наборе реальных данных, так и на правилах, которые были установлены путем подкрепления предыдущих решений – это называется машинным обучением.
Этот процесс происходит в больших масштабах в компьютерах. Например, можно предсказать поведение человека на основе его наблюдаемого поведения и его прогнозируемого поведения. В другом смысле машинное обучение часто называют процессом объединения прошлых событий с данными из текущего сценария и предсказания будущего текущей ситуации. С этой точки зрения машинное обучение – это задача, которая выполняется в текущей ситуации.
С другой стороны, с точки зрения видения системы ИИ могут принимать решения. Системы ИИ могут определять правильные ответы на основе различных входных данных и понимать причины решения, принятого системой. В этом контексте системы ИИ в основном учатся вести себя на основе своего опыта.
Термин ИИ широко известен, но многие люди не понимают концепции и различных приложений ИИ. Причина, по которой люди путаются в отношении ИИ, заключается в том, что ИИ определяется на основе разных областей исследования, и ИИ используется в разных приложениях – и они также называются разными технологиями.
Некоторые приложения ИИ так же просты, как, например, использование алгоритма машинного обучения для классификации изображений. В другом смысле это также, может быть, процесс обнаружения новых закономерностей в данных и принятия решений на основе этих закономерностей. Например, компьютер может принимать решения на основе изображений, которые классифицируются по таким категориям.
Есть два подхода, которые можно использовать для определения качества системы ИИ. Один подход – это общий подход, и он не обязательно делает систему ИИ отличным решением. Второй подход называется конкретным подходом и направлен на то, чтобы сделать систему ИИ отличным решением. В общем подходе цель состоит в том, чтобы иметь системы ИИ, которые могут работать с ограниченными задачами. Конкретный подход предназначен для решения одной конкретной проблемы.
Каждый подход имеет свои сильные и слабые стороны. Например, конкретный подход лучше подходит для принятия решений на основе конкретных требований. Например, лучше выполнять конкретную задачу. Общий подход обычно очень эффективен для принятия решений, но не всегда эффективен для решения конкретной проблемы. Например, общий подход может быть эффективным для улучшения существующей модели.
Приложения и возможности ИИ
Искусственный интеллект можно использовать для анализа информации и принятия решений на основе данных. Благодаря этим решениям предприятия могут получить информацию, которая поможет им принимать более обоснованные решения. Это означает, что ИИ может обеспечивать обратную связь различными способами, от простых идей, таких как оптимизация маркетингового подхода, до сложных систем, таких как решение в контексте решения. Это поможет бизнесу оптимизировать решение и сделать его лучше, но и проще.
По мере развития технологий ИИ появляются новые приложения. Например, технологии искусственного интеллекта могут помочь улучшить здравоохранение – например, для выявления рака у пациентов. С другой стороны, ИИ также может помочь нам в решении деловых и технических проблем путем разработки более эффективных процессов.
Алгоритмы машинного обучения, как их чаще называют, могут принимать данные в виде текстов, изображений, аудио, видео или измерений, обрабатывать их и определять набор правил. Основываясь на наборе правил, которые изучает машина, она может принимать решения и выполнять действия на основе этого решения. Это позволяет технологиям ИИ улучшать системы, продукты, процессы и информацию. Приложения ИИ чаще называют классом приложений, но их можно использовать для разных целей.
Моделирования интеллекта
Общая проблема моделирования (или создания) интеллекта разбита на подзадачи. Они состоят из определенных черт или возможностей, которые исследователи ожидают от интеллектуальной системы. Черты, описанные ниже, привлекали наибольшее внимание в прошлом, хотя этот список далеко не исчерпывающий.
Дизайн (конструкция) интеллекта. Имитация интеллекта. Демонстрируйте интеллект.
Первый касается наличия интеллектуальных систем, способных имитировать поведение, наблюдаемое в широком диапазоне ситуаций и условий. Часто предполагается, что системы искусственного интеллекта будут создаваться для воспроизведения многих функций, отображаемых реальным интеллектом, с намерением в конечном итоге показать, что настоящий интеллект возможен.
Демонстрационная часть посвящена демонстрации реального интеллекта. Это говорит о том, что настоящие интеллектуальные системы существуют.
У нас есть конкретные примеры реальных интеллектуальных систем с большими наборами данных. Такие системы запускают полезные алгоритмы в реальных ситуациях. Алгоритмы не обязательно имитируют поведение, наблюдаемое в реальном мире; однако они были разработаны для достижения конкретных целей.
Приложения интеллекта включают в себя распознавание событий и действий, которые явно не определены текущим человеческим программированием. Это характеристика систем искусственного интеллекта, которые сегодня называют прогнозирующим интеллектом.
Обнаружение типов объектов и объектов. Идентификация различных предметов или деталей. Распознавание информации, связанной с этими объектами. Создание объектных или информационных представлений. Интерпретация информации. Анализ информации, представленной объектами. Установление отношений между объектами. Это примеры интеллекта в информатике. Примеры включают алгоритмы обработки изображений, сети, базы знаний, виртуальные вычислительные среды (суперкомпьютеры) и искусственные нейронные сети (искусственные нейроны).
В области компьютерных наук искусственный интеллект и искусственные нейронные сети считаются системами искусственного интеллекта. Таким образом, искусственный интеллект определяется как «разработка интеллектуальных систем, которые могут имитировать сложный интеллект, который может иметь вычислительную мощность, подобную человеческой».