Оценить:
 Рейтинг: 0

Дилеммы XXI века

Год написания книги
2021
Теги
<< 1 2 3 4 5 6 7 8 >>
На страницу:
6 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Этими приведёнными примерами, собственно говоря, ограничивается список опубликованных до сих пор концепций звёздной инженерии – пожалуй, мы добавим к нему ещё идею самую смелую из всех, звучащую для нас сегодня фантастически, автором которой является уже упоминавшийся Кардашев. В своей идее он идёт от присутствия в Космосе так называемых «чёрных дыр», которые являются, пожалуй, самыми оригинальными объектами современной астрономии. Чёрная дыра – это звезда, которая сжалась под воздействием собственных гравитационных сил, когда сгорели её ядерные запасы. Потому что звезда подчиняется, в принципе, двум противоположным силам – центростремительной силе гравитации и центробежной силе излучения. Когда, говоря примитивно, звезда уже не имеет что противопоставлять центростремительному притяжению, потому что «сгорела», она начинает сжиматься, становясь всё более плотной, пока, наконец, достигнув достаточно маленького размера, определяемого так называемым радиусом сферы Шварцшильда, закрывается в «гравитационной могиле». Никакие частицы, никакие световые лучи уже не могут её покинуть, так что, согласно уравнениям Эйнштейна, даже скорость света становится недостаточной для преодоления гравитационного «захлопывания». Такая звезда становится невидимой для всех внешних наблюдателей «чёрной дыры», и может быть замечена только благодаря тому, что по-прежнему притягивает окружающие её тела. Наличие «чёрных дыр» современная астрономия предполагает в определённых системах двойных звёзд, в которых одну составляющую системы не удаётся увидеть, зато она оказывает своеобразное воздействие на вторую (например, тем, что стягивает к себе внешние слои газовой атмосферы второй звезды, а газ этот, огибая по суживающейся спирали «чёрную дыру», прежде чем до неё доберётся и окончательно исчезнет, поглощённый её гравитацией, приобретает огромную энергию, проявляющуюся короткими, мощными вспышками в рентгеновской части спектра). Другой советский астрофизик, Сахаров, занимался именно математическим моделированием условий, преобладающих внутри чёрной дыры, и показывал, что если принять определённые исходные условия, чёрная дыра не должна становиться для каждого, кто в неё попадает, смертельной ловушкой. Поэтому для определённых начальных условий возможна такая, признаем, необычная, просто фантастическая последовательность событий. Наблюдатель, приближаясь к гравитационной границе, в определённый момент проникает через неё и оказывается под поверхностью чёрной дыры. В этот момент он видит окружающий Космос с резким смещением света к красному. Если он будет находиться под поверхностью чёрной дыры в течение определённого времени согласно его собственным часам не слишком долго (то есть не астрономически долго), смещение света, которое происходит у него снаружи, достигнет максимума. В это время, для наблюдателя – недолгое, история нынешней Вселенной достигнет своего предела. Наблюдатель, находящийся под гравитационной границей, может, таким образом, буквально «переждать» весь Космос, поскольку его локальное время течёт бесконечно медленней, чем обычное время окружающей Вселенной. Он сможет наблюдать всю историю этой Вселенной в свете, сильно смещённом к красной границе спектра. Когда же он начнёт выбираться из-под гравитационной границы, возникнет сильное смещение света, идущего снаружи, к фиолетовой стороне спектра, и в этом свете он, в свою очередь, будет наблюдать всю историю «следующего Космоса» – то есть того, который возникнет после окончания текущей фазы метагалактической эволюции.

Для внешнего же наблюдателя, который находился бы в этом «следующем Космосе», прежняя «чёрная дыра» будет видна как «белая дыра», из которой наш ныряльщик-наблюдатель вынырнет наружу. О том, возможно ли это физически, мы ничего не знаем, математически же всё это возможно наверняка – потому что такую последовательность событий представляют математические модели явления. Наблюдатель, ныряющий в глубь чёрной дыры, узнает (то есть в принципе мог бы узнать) всю историю своего Космоса до самого конца, но знания этого он не может никому сообщить из его жителей (не может, поскольку свет действительно проникает снаружи в глубь чёрной дыры, но не может её покинуть). Зато в «следующем» Космосе, в котором наш наблюдатель выныривает, он познает (в свете, перемещённом к фиолетовому) всю историю этого Космоса от его возникновения до самого момента выныривания (из белой дыры) – но там опять, полностью познав прошлое, он ничего не узнает о будущем…

Говоря «предыдущий Космос», «следующий Космос», мы пользуемся, впрочем, условными названиями, потому что нет никакого «очередного времени», которому бы подчинялись две отдельные фазы звезды в коллапсе (чёрная дыра и белая дыра), и потому следует говорить скорее, что представленные выше модели относятся к Космосу разветвлённому и сросшемуся («места срастания», видимые с одной стороны – «нашей», – это чёрные дыры, видимые с другой стороны – «не нашей» – это белые дыры).

В такие астрономические условия Кардашев вписал наиболее своеобразный из предложенных вариантов звёздной инженерии. Высокоразвитая цивилизация уже не размещается рядом с чёрной дырой, а преобразует в такую дыру одну из звёзд своего окружения. И тогда она может полностью покинуть наш Космос, чтобы перебраться к «следующему», – образ поистине уникальный! Правда, неясны были бы мотивы таких действий, если отметить, что Космос или, скорее, Суперкосмос, разветвлённый и «сросшийся» переходами, где вход через чёрные дыры, а выход через белые, может содержать такие участки, в которых с точки зрения преобладающих физических условий жизнь не может ни существовать, ни возникать. Следовательно, такое путешествие «из Космоса в Космос» было бы шагом отчаянно рискованным – по крайней мере с позиции нашего знания.

Однако же соседство чёрной дыры может быть полезным для цивилизации очень энергоёмкой, даже если она не намерена выдвигаться в описанное, последнее путешествие. Туманный диск, кружащийся вокруг чёрной дыры, медленно затягиваемый в неё гравитацией, создаёт огромную энергию, которую извлекать каким-нибудь методом управляемой передачи (лазерной, например) инженеры могли бы проще, чем из обычной звезды. Потому что известно, что сжимаемые вращением, разогревающиеся внутренние части этого диска являются источником чрезвычайно сильного рентгеновского излучения, то есть такого, которое отличается исключительно большой концентрацией энергии. Поэтому в нашем представлении возникает возможность введения в этот газовый диск средств, черпающих и передающих энергию направленными лучами даже на значительное расстояние.

IV. «Космические чудеса»

Как сказал И. Шкловский, каждое явление, вызванное в Космосе искусственно, в наших глазах должно выглядеть как «чудо» – в том же смысле, в каком мы приняли бы за чудо самопроизвольную кристаллизацию работающего автомобиля внутри пласта железной руды. То, что является «чудом» с позиции знания о возможности явлений, происходящих естественным образом в Природе, должно представлять, ясное дело, результат разумной интервенции планирующего свои начинания Разума. К сожалению, более детальное рассмотрение различий, существующих между искусственным явлением (как намеренно сконструированный автомобиль) и естественным (как гравитационный коллапс звезды) ведёт нас в гущу дилемм, откуда следует поразительный вывод, что нет никакой абсолютной, объективно существующей разницы между тем, что натурально, и тем, что искусственно. Поэтому обе эти категории оказываются относительными и определяются уровнем знания наблюдателя. Ответ на вопрос, почему разница между тем, что искусственно, как звёздная инженерия, и тем, что естественно, как эволюция звёзд, носит относительный характер, зависит от уровня технологического развития, достигнутого цивилизацией, и выходит далеко за область технологии, а поэтому касается фундаментальных отношений, существующих между Разумом и Вселенной.

Простым примером относительности различий естественного и искусственного может быть высвобождение атомной энергии, рассматриваемое первый раз человеком прошлого века, а второй – современным. Для ученого из XIX века гриб ядерного взрыва представлял бы явление естественное, в его глазах это было бы проявлением стихийного действия сил Природы, поскольку этот учёный ничего не мог знать о возможности преднамеренного инициирования цепной реакции распада ядер. А ведь только несколько десятков лет истории отделяет этого наблюдателя от современного. Насколько тогда большей может быть пропасть, разделяющая знание и умение земной цивилизации от таких цивилизаций, которые занимаются инструментальной деятельностью в течение десятков тысяч лет! Однако же разница между естественным и искусственным сводится к тому, в какой мере можно вмешаться в ход материальных событий. Человек по-прежнему остаётся существом «телесно натуральным» – потому, что не умеет изменить параметры собственного тела ни экстренно, ни в потомстве – путём манипулирования наследственностью. В этом понимании человек особо одарённый рождается всегда естественно, то есть в результате такого соединения родительских генов, на которое мы не можем оказать никакого влияния. Однако, если бы окончательно сформировалась эта генная инженерия, о которой в настоящее время столько говорят, гений мог бы явиться на свет как естественным, так и искусственным способом. В этом случае граница между естественным и искусственным остаётся ещё явной. А что было бы, если бы человек, взявший в собственные руки судьбу своего вида, начал от поколения к поколению постепенно себя переделывать, придавая своему телу и разуму такие свойства, каких он до сих пор не имел? Каждое последующее поколение представляло бы конгломерат свойств отчасти ещё натуральных, а отчасти приданных искусственно, и через определённое время то, что генетически искусственно, и то, что естественно, соединилось бы в целое, неразличимое для современного наблюдателя. Таким образом, различия между естественными и искусственными чертами приобретают характер чисто исторический, ибо для того, чтобы их разделить, надо познать прошлое (может давно минувшее) данной разумной расы.

Теперь, когда мы опять обратимся к Космосу, нам будет легче понять, что в нём могут иметь место области явлений насколько «естественных», настолько же и «искусственных». Предположим, что какая-то космическая цивилизация несколько десятков миллионов лет эксплуатировала для своих целей шаровидное скопление звёзд, провоцируя массовые взрывы этих звёзд, а после получения необходимых для своих целей результатов или сырья прекратила деятельность в этой звёздной инженерии. Изменённые в новые или суперновые звёзды элементы этого шаровидного скопления преобразуются дальше, уже вне сферы инженерных интервенций. Каким же будет в таком случае ответ на вопрос, не являются ли естественными подобным образом изменённые небесные тела? Импульс, который привёл к резким переменам, был искусственным, но вместе с тем то, что он спровоцировал, как и то, что произошло позже, происходило согласно физическим законам природы. Тот, кто это скопление, быть может уже ставшее разновидностью туманности, изучал бы в настоящее время, ни в коей мере не определил бы, особенно на астрономическом расстоянии, его прошлое, то, что на некотором этапе оно подверглось инженерному вмешательству. Также в Космосе могут находиться звёздные «свалки», движущиеся по орбите залежи сырьевых отходов, остатки звёзд, погасших потому, что кто-то их энергию использовал в «неестественном» ускорении – но каким, собственно говоря, способом можно убедиться, что это было именно так?

Абсолютно возможно, что даже немалая часть феноменов, наблюдаемых земными астрономами, имеет именно такой запутанный, смешанный характер, что это есть поздние результаты давних вторжений, инструментальной деятельности, когда преследовались определённые цели, обусловленные достигнутым уровнем развития цивилизации. И так как это возможно, то мы не обладаем ни одним критерием выбора, использование которого позволило бы нам с уверенностью ставить соответствующий диагноз. Потому что главное правило естествознания – это объяснение всяческих явлений как происходящих естественным образом. Физик ведь не допускает мысли, что атомным ядрам кто-нибудь когда-нибудь мог бы придать определённые параметры так, как мы придаём желаемые параметры нашим ракетам или автомобилям. Также даже если учёные открывают объекты, ведущие себя согласно их прежним знаниям необъяснимо и загадочно – так было, например, с пульсарами, – они прилагают усилия, чтобы придумать такой естественный – следовательно, никем не нарушенный – ход событий, который самопроизвольно вызвал возникновение этих объектов. И для пульсаров нашли именно физический механизм, достаточно объясняющий их свойства, чтобы не надо было прибегать относительно них к гипотезе звёздной инженерии. Следует думать, что учёные так же будут поступать по отношению ко всем остальным, ещё не открытым чудесам Вселенной.

И тем самым обнаружение наблюдателями звёздной инженерии представляет собой изрядно твёрдый орешек. Поэтому диагноз её проявления никогда не может быть полностью точным, а уверенными в нём могут быть, пожалуй, только те, кто знает уже все её тайны, поскольку сами ею занимаются!

Ведь то, что Шкловский называет «космическим чудом», не противоречит законам Природы. Только в рамках действия этих законов является очень маловероятным. Или невероятным, вплоть до практической невозможности, как уже упоминавшаяся кристаллизация современного автомобиля из железной руды. Таким образом, хотя трудности распознавания астроинженерии довольно явно отличаются от трудностей, возникающих при поиске космических сигналов, сложно утверждать, чтобы эти первые были меньше вторых. Распознавание это не должно наполнять нас пессимизмом, даже наоборот, потому что, показывая сложную природу вещи, оно одновременно ведёт нас к дальнейшему накоплению знания.

V. Космизация технологии

Хотя это может прозвучать парадоксально, искатель проявлений звёздной инженерии должен руководствоваться в своих действиях не столько и не только тем, что согласно законам физики ВОЗМОЖНО, но и тем, что ими запрещено, устанавливая невозможность определённых событий.

Ничто не указывает на то, чтобы можно было каким-либо способом обойти законы термодинамики. Нельзя, например, получать энергию из ничего, энергию также нельзя уничтожить, нельзя преобразовать её в работу со стопроцентным коэффициентом полезного действия. Подобным ограничениям должно тогда подчиняться всякое инженерное действие в Космосе, и именно это обстоятельство создаёт определённые градиенты развития цивилизации.

Мы не знаем, какого рода энергию могут использовать на отдельных стадиях своего развития космические цивилизации. Однако мы знаем, что, невзирая на то, какие они используют при этом методы, их энергетический баланс подчиняется законам термодинамики. Так, например, прежде чем футурология занялась проблемами энергетики в масштабе Земли, астрофизики проекта CETI заметили, что росту освобождения энергии на планете должны быть установлены определённые границы, потому что иначе средняя температура Земли начала бы расти вплоть до невозможности жизни на ней. И это потому, что приход и расход энергии приводят к состоянию равновесия, в котором тело излучает столько же энергии, сколько её получает. Освобождая энергию, мы тем самым нагреваем Землю, и когда количество освобождённой энергии становится соизмеримо с энергией, полученной Землёй от Солнца, её тепловое равновесие нарушается. Поэтому уже сейчас обсуждается вопрос выведения на внеземные орбиты энергетических станций, которые захватывали бы солнечное излучение и переправляли его коротковолновыми пучками принимающим станциям на поверхности планеты. Такой центральный пункт, предположим, имея 40-процентную производительность, передавал бы на Землю только эти 40 процентов полученной энергии, излучая остальные 60 процентов в космический вакуум, тем самым значительно оберегая тепловой баланс нашей планеты. Если же прирост технологических мощностей должен продолжиться, на очереди окажется рекомендуемое размещение на орбите не только систем перехвата солнечного излучения, но и целых производственных единиц, поскольку только этим способом их энергетический баланс можно исключить из баланса планеты, на которую эти летающие производства (например, металлургические комбинаты) выделяли бы уже не энергию в сыром виде, а посылали готовые продукты конкретной технологии. Такого рода экстраполяции, если они направлены в очень отдалённое будущее, подсказывают возникновение градиента технологической космизации, то есть технологий, выведенных за пределы планеты. И поскольку потребление энергии тем более лёгкая задача, чем больше концентрация потоков этой энергии, то отсюда логично следует необходимость размещения космизированных производственных единиц не вблизи материнской планеты, а, скорее, вблизи Солнца, потому что там они будут работать в более энергетически выгодных условиях. Следует обратить внимание на тот факт, что космизация технологии – это, собственно говоря, не что иное, как использование Космоса в качестве охладителя для тепловых машин, причём такого охладителя, который ни в коей мере нельзя термически перегрузить, поскольку для всех практических целей тепловая абсорбционная способность Космоса бесконечно велика. Разумеется, энергия, приводящая в движение выведенную за пределы планеты технологию, не должна быть тепловой, но это дела не меняет, поскольку всякий род используемой энергии подлежит постепенной деградации, чтобы в конце этого пути перейти в тепловое излучение, от которого, собственно говоря, планету следует спасать. К вышеприведённым выводам наталкивает, как говорилось, принятие законов термодинамики как действующих повсеместно. Определяя тогда, что физически невозможно, мы облегчаем себе понимание того, что возможно, и намечающееся тем самым направление будущих инструментальных работ.

Представленный космический «exodus[8 - Исход (англ.).]» земной технологии может вступить в противоречие с громкой сегодня инновационной директивой, устанавливающей необходимость подражания, в рамках технологии, типовым биосферным процессам, а именно: круговоротам материи и энергии. Однако необходимо заметить, что решения циклического типа, желательные и просто неизбежные в недалёком будущем, не могут обещать постоянного прогресса, поскольку всякое техническое решение, не покидающее Землю, воздействует на её биосферу. Можно определить величину, которую следует назвать предельным цивилизационным ростом планетарной биосферы. Биосфера – это своего рода гомеостат, в котором происходит движение материи и энергии от природы неживой к живой и – обратными кругами цикла – наоборот. И поскольку с термодинамической точки зрения биосферный гомеостат является тепловой машиной, так как поглощает, чтобы поддерживать своё существование, солнечное излучение, а в последних звеньях жизненных процессов преобразует его в тепловую энергию, то тем самым антиэнтропическая часть работы этого гомеостата (то есть жизнь) вместе с энтропической частью (то есть с распадом) должна продолжаться в положении равновесия. Следовательно, предельный цивилизационный рост биосферы просто равен всему энергетическому приходу и расходу системы. Говоря иначе, естественную биосферу можно заменить её технически созданным эквивалентом, в пределах которого биологическую массу растений и животных заменили бы организмы людей, при этом, например, вместо растений фотосинтез осуществляли бы соответствующие устройства, создающие кормовые субстанции для людей, а также выделяющие кислород в атмосферу. На такой Земле не было бы уже никаких живых существ, кроме человека. Такая система должна была бы, для сохранения жизни, выполнять такие же задачи в границах энергетического баланса, какие выполняла прежде биосфера, которую она заменила. Картина эта, железного технологического волка, который впился в живое тело биосферы (словно волк в лошадь, как рассказывает об этом барон Мюнхаузен в одной из своих баек) и последовательно принял её функции, представляется нам отталкивающей и не годящейся для принятия, и я не считаю, что ей можно приписать ценность прогноза.

Эта картина только показывает нам, что, оставаясь на планете, человек не может значительно перегрузить биосферу своими технологиями и даже если бы он мог ими заменить работу массы живых биологических организмов, он не избавится от системных ограничений, поскольку должен или «поместиться» вместе со своими технологиями в энергетическом балансе системы, или привести эту систему к перегреву, который и его самого также погубит. Как мы знаем, своеобразная разновидность жизненной конкуренции, которую человек бессознательно привёл в движение среди других живых видов своими технологиями, уже сейчас начала угрожать также и его жизненной среде. Эти угрозы, в большой мере вызванные расточительностью начинаний, позволят сократить закрытые циклические производственные процессы, но конкуренции в сосуществовании цивилизации и биосферы совсем ликвидировать нельзя. Собственно говоря, нет технологий, не приносящих никакого вреда даже в том случае, если их «осваивают» так, чтобы они благоприятствовали сохранению других форм жизни помимо человеческих. Все эти обстоятельства, взятые вместе (антагонизм технологии и биосферной целостности, который можно уменьшить, но от которого нельзя избавиться полностью; предельная восстановительная способность атмосферы, океанов и биосферы; противоречие между потребностью сохранения глобального теплового равновесия и потребностью техноэнергетического роста) приводят к тому, что, будучи очередным исторически неизбежным шагом, циклически замкнутая (recycling) технология вместе с тем не является, подобно биосферной, таким способом перестройки цивилизационных начинаний, который гарантирует, после повсеместного внедрения, постоянный и ничем уже не ограниченный дальнейший прогресс. Расточительность можно и следует превратить в экономию; к экологически вредным технологиям в качестве защиты и лекарства нужно добавлять технологии, специально ориентированные на поддержку живой субстанции биосферы, но таким способом цивилизационный рост можно увеличивать только до определённого уровня. (Можно уже сегодня определять параметры этого роста, хотя оценочным, грубым и потому неточным способом, поскольку мы не знаем ни всех выходных данных, ни ориентируемся в фактической сложности биосферных круговоротов.) Из сказанного выше можно по-прежнему утверждать, что на смену фазе стихийности и расточительности в сфере технологических работ действительно должна прийти фаза технологий, функционирующих в замкнутых границах по эволюционно-биосферному образцу, но не как окончательная фаза, поскольку шагом радикально выходящим за пределы системных ограничений будет только космизация всё большей части инструментальных работ цивилизации.

VI. Будущее Земли

Выше с двух сторон были представлены отдельные черты звёздной инженерии, сначала – словно рассматривая её снаружи, согласно задачам проекта CETI, когда мы говорили о них как о «космических чудесах», а потом – «изнутри», когда мы рассуждали, какие обстоятельства историческо-прогрессивной природы могли бы подтолкнуть человечество на путь космизации технологической деятельности. Эти картины следует сопроводить двойной оговоркой.

Во-первых, астроинженерное продолжение начатых на планете работ не представляет универсальной необходимости, поскольку этот шаг зависит от совокупности политических, экономических и человеческих факторов, которые могут его или отдалять от реализации, или же радикально перечеркнуть. Так, например, цивилизация, проводящая политику жёсткой демографической стабилизации, то есть такая, где численность населения, даже при достижении высочайшего индивидуального жизненного уровня, постоянно остаётся незначительной частью всей биологической массы биосферы, может от космизации технологии отказаться без всякого для себя вреда. Несложно понять, что если бы численность населения Земли никогда не превысила бы миллиард, стабилизировавшись на этом уровне с небольшими отклонениями от достигнутого равновесия, то количество энергии, вырабатываемой на одного жителя, даже допуская далеко идущий прогресс, удерживалось бы на безопасном для биосферы уровне. А то, что население планеты достигает четырёх, восьми или двадцати миллиардов, не исключает возможности его постепенного сокращения за некоторое количество поколений при соответственно проводимой демографической политике. По проблеме споров, которые наталисты ведут с антинаталистами, я здесь вовсе не высказываюсь, потому что вышеприведённое замечание должно только служить примером таких обстоятельств, когда космизация технологических процессов может не потребоваться.

Во-вторых, переход к каждой последующей фазе технологического развития представляет всегда столь же запутанную, сколь и трудную дилемму. Как я писал об этом в «Сумме технологии»: «Переход от одних, исчерпывающихся источников энергии к новым – от силы воды, ветра и мускулов к углю, нефти, а от них в свою очередь к атомной энергии – требует предварительного получения соответствующей информации. Только тогда, когда количество этой информации перейдёт через некоторую “критическую точку”, новая технология, созданная на её основе, открывает нам новые запасы энергии и новые области деятельности. Если бы, допустим, запасы угля и нефти были исчерпаны к концу XIX века, весьма сомнительно, добрались ли бы мы в середине нашего столетия до технологии атома, если учесть, что её осуществление требовало огромных мощностей, приведённых в действие сначала в лабораторном, а потом и в промышленном масштабе. И даже сейчас человечество ещё не вполне подготовлено к полному переходу на атомную энергию. Собственно говоря, промышленное использование “тяжёлой” атомной энергии (источником которой являются расщепления тяжёлых атомных ядер) при нынешнем темпе роста поглощаемых мощностей привело бы к “сжиганию” всех запасов урана и близких к нему элементов в течение одного-двух столетий. А использование энергии ядерного синтеза (превращение водорода в гелий) ещё не реализовано. Трудности оказались значительнее, чем поначалу можно было предвидеть. Из сказанного следует, во?первых, что цивилизация должна располагать значительными энергетическими резервами, чтобы иметь время для получения информации, которая откроет ей врата новой энергии, и, во?вторых, что цивилизация должна признать необходимость добывания такого рода информации задачей, главенствующей над всеми другими задачами. В противном случае она рискует исчерпать все доступные ей запасы энергии, прежде чем научится эксплуатировать новые. При этом опыт прошлого показывает, что энергетические расходы на получение новой информации растут по мере перехода от предыдущих источников энергии к последующим. Создание технологии угля и нефти было энергетически намного “дешевле”, чем создание атомной технологии»[9 - Лем С., Сумма технологии. – М.: АСТ, 2018, с. 121–122.].

Актуальность этих утверждений, написанных двенадцать лет назад, уже сейчас несомненна. Более того, только сейчас эксперты начинают принимать во внимание в своих предварительных расчётах энергетические затраты, идущие на открытие новых источников энергии, потому что до сих пор их и не рассчитывали, и не учитывали в инвестициях. Затраты эти принимали за долю частного риска, какой принимает большой капитал, когда инвестирует средства в технологические инновации. А затраты эти уже в настоящее время столь велики, что в капиталистической системе справиться с ними можно только тогда, когда инвестором становится само государство, или если эту деятельность осуществляют крупные международные корпорации, в малой степени подверженные различным влияниям, в том числе и контролю властей. При этом намечается тенденция участия этих суперкорпораций в политическом процессе, называемая «социализацией потерь», но не прибыли, потому что, осознавая риск необычайно дорогих начинаний, которые должны привести к новым источникам энергии, такая надгосударственная корпорация желает, чтобы в случае понесённых при этом потерь она могла бы рассчитывать на дотации из государственной казны (или просто из кармана налогоплательщиков), зато никого не намерена допускать к участию в возможной прибыли. Политика большого капитала, так изменяющаяся относительно традиционных норм, встречает также сильное сопротивление, и надо предполагать, что в этой сфере, которую я не намерен здесь рассматривать, в недалёком будущем возникнут новые правила игры, которые будут закреплены в международных соглашениях.

В любом случае уже не подвергается сомнению тенденция, о которой я писал раньше: возрастание, в разы, стоимости очередных энергетических перестроений земной цивилизации. Без учёта того, сколько будет стоить для заинтересованных государств (тех, в которых существенно сказался энергетический кризис) атомизация энергетики, к которой сегодня приступают широким фронтом, ясно, что будущая космизация технологии будет задачей ещё более дорогой. По размерам необходимых на Земле подготовительных мероприятий, а также инвестированных во внеземном пространстве средств эти работы могут оказаться непосильны не только для капиталистических корпораций и не только для отдельных государств, но даже для великих держав, если они будут выполнять их в одиночку. Это значит, что объективная тенденция технологического развития будет благоприятствовать социализации производственных средств, будет принуждать к сотрудничеству, сглаживая, быть может скорее в Космосе, чем на Земле, межгосударственные границы. И это потому, что эта следующая уже звёздная фаза инженерии окажется тем эффективнее и продуктивнее, чем в большей степени будет результатом труда всего человечества. И поскольку всегда в истории давление объективных условий существования имеет больший эффект, чем благородные намерения, поскольку им принадлежит последнее слово, надо эту тенденцию, выводящую в Космос орудия трудов человеческих, признать не только обещающей преодоление земных технических ограничений, но также предвестником лучшего политического будущего мира.

Вышесказанным мы показали, в каких условиях и по каким причинам звёздная инженерия может стать очередным источником развития цивилизации. Из этого представления ясно следует, что переход от планетарной технологии к космической не является результатом чьего-то необузданного желания и безгранично распространившейся СВОБОДЫ действий, а исторической неизбежностью, ибо тот во Вселенной направляет силы на звёздные замыслы, кто уже ДОЛЖЕН действовать именно с таким размахом.

История одной идеи

1. Информация и утопия

В 1964 году в Польше появилась «Сумма технологии» – книга, жанровую принадлежность которой я не мог определить, хотя и являюсь её автором. В то время ещё ничего не было слышно об исследованиях будущего, называемых теперь футурологией, что всё же лишь частично объясняет классификационную неопределённость «Суммы», которая не может быть прямо отнесена к прогностической литературе, поскольку её предпосылкой является непредсказуемость будущего. Однако я обнаружил, что тот, кто предполагает такую непредсказуемость, ещё не обречён вследствие этого на молчание, так как не знать конкретного будущего ещё не означает, что нельзя проанализировать шансы того, что может быть реализовано в виде технологии. Эту основную идею книги я расширил так, чтобы она охватывала как естественные, так и искусственные явления. Можно ведь звезду рассматривать как sui generis[10 - Своего рода (лат.).] «водородную бомбу», взрыв которой обеспечивается силой тяжести, точно так же, как естественную эволюцию наследственного кода можно приравнять к самоорганизующемуся (автоматизированному) накоплению (методом проб и ошибок) информации, необходимой для построения определённых систем (обычно называемых растениями и животными).

В соответствии с полусерьёзным лозунгом «Догнать и перегнать природу (в совершенстве конструкторских решений)» книга должна была рассмотреть, какие технологии должны быть реализованы в дополнение к тем, которыми люди уже владеют. Так условным героем «Суммы» стал Конструктор, который сначала только присматривается к природе, а потом осмеливается конкурировать с ней. Этот Конструктор является, так сказать, человеком в первом приближении, он должен олицетворять Разум и разумную деятельность независимо от того, касается ли и то, и другое определённого небесного тела под названием Земля или любой другой планеты или места Вселенной. И всё потому, что Конструктор может преобразовать не только окружающий его мир, получив необходимые знания и инструментальные средства, он может также взяться за преобразование себя и себе подобных. Я занимался тем, что осуществимо в конструктивном смысле, а не только тем, что в качестве задачи является «правильным» (хорошим) или «неправильным» (плохим), потому что я считал этот вопрос вторичным по сравнению с самой возможностью действовать. При этом я был далёк от мысли, что вероятную конструируемость перечисленных в книге гипотетических «механизмов», таких как «выращивание информации» или «подмиры», технически внедрённые в данный нам мир, следовало бы отождествить с мнением, что однажды человечество всё это реализует. В частности, я посчитал возможным, что человечество фатальным образом довольно скоро покончит с собой и не использует ни единую из множества указанных возможностей.

Я предположил, что в Космосе существует множество Разумов, множество цивилизаций и потенциальное многообразие путей цивилизационного развития. Так что я был в некотором смысле шеф-поваром, который при составлении разнообразного меню вовсе не придерживается мнения, что каждый гость должен лично употребить всё, что указано в меню. «Сумма технологии», как и изданные шесть лет ранее «Диалоги», не привлекла к себе внимания ни литературных, ни научных кругов Польши. «Диалоги» не имели ни одной рецензии, «Сумма» же через нескольких месяцев получила одну в варшавском литературном ежемесячнике «Twоrczosc». Её автором был Лешек Колаковский, философ, который уже и за нашими границами пользуется немалым интеллектуальным авторитетом. Хотя Колаковский назвал книгу «жемчужиной литературы, занимающейся философией техники», но всё же далее в этом предложении добавил, что «Сумма» «тем более заслуживает критического внимания», и не поскупился на упрёки в том, что у меня смешались «информация и утопия» (именно так была названа его рецензия). Свои размышления Колаковский начал со следующих слов:

«Мальчик, который детской лопаткой копает ямку в земле, может быть убеждён в том, что если он будет упорно и достаточно долго стараться, то в конце концов пройдёт сквозь земной шар и попадёт из Польши на дно Тихого океана». И далее он написал: «Но моя критика умеренна. Главным её пунктом является замечание, что сочинение Лема неразрывно связывает большое количество фактической информации и фактических наблюдений с фантастическими идеями о технологическом будущем мира, в результате чего эти идеи приобретают черты такой реальности, как будто речь идёт о строительстве нового моста через Вислу. (…)Утверждения, которые позволяют нам надеяться на саморазвивающееся выращивание информации, на получение точных копий существующих живых личностей, на организацию фантоматики в произвольной области, абсолютно субъективно неотличимой от реальности, и, более того, перспектива построения бесконечных миров и перспектива создания существ с бессмертной душой – всё это стоит рядом с очень значительным количеством информации о текущих научных вопросах и в некоторой степени является её естественным продолжением. Читатель (…) может иметь трудности в различении сказки и информации, и он может на самом деле поверить, что уже послезавтра инженеры построят новые планеты в далёких туманностях и населят их мыслящими существами. Я ничего не имею против фантазии, я только против её иногда вводящего в заблуждение контекста. (…) Короче говоря, упомянутый в начале мальчик может как копать своей лопаткой, так и слушать сказки о подземных рыцарях, но было бы хорошо, если бы он различал истинный статус обоих этих реальностей…».

Итак, по мнению Колаковского, моя вина заключается в том, что я смешал сказки с реальностью. Меня удивило, что он похвалил книгу, назвав её «жемчужиной», хотя я написал её, главным образом, для представления того, что он считает «сказками». Но я не пытался опровергать его обвинение, ибо понимал, что гипотезы живут или погибают в зависимости от того, подтверждают или опровергают их факты, и что каждый спор является бессмысленным, если в нём нужно присвоить смелым идеям статус «сказки» или «правды», а при этом речь идёт о вещах, воплощение которых в настоящее время не гарантирует ничто, кроме субъективного ощущения правдоподобия. Признаюсь, однако, что я не ожидал, что при моей жизни хотя бы одна из моих фантазий осуществится или хотя бы получит оспоренный Колаковским статус научной гипотезы, то есть сформулированного компетентными специалистами и снабжённого аргументами предполо жения.

Между тем в начале 1978 года весь мир облетела сенсационная новость о «производстве точных копий существующих живых существ». Речь шла о книге одного американца, в которой он утверждал, что из клетки ткани, взятой у одного живого человека, удалось вырастить человеческое существо. Эта технология, названная клонированием (cloning), теоретически была известна и ранее. Многие опрошенные прессой выдающиеся биологи опровергли эту новость. Существенно, однако, было то, что ни один авторитет не считал этот вопрос сказкой, галиматьёй или фантазией. Почти все биологи говорили одно и то же: технология «дублирования» людей посредством клонирования сегодня ПОКА невозможна, даже если её применение для низших животных уже было успешным.

Так концепция, которую в 1964 году Колаковский посчитал утопичной, в 1978 году стала предметом публичной полемики, а о сроке её реализации специалисты рассуждают с полной серьёзностью, которая указывает на то, что в один прекрасный день этот срок будет установлен. Когда я писал «Сумму технологии», клонирование как биотехнология было известно специалистам, но являлось просто чистым понятием, но за последние несколько лет в биологии произошло много «первоначальных прорывов». Например, в этом году один производитель впервые запатентовал метод «конструирования» ранее не существовавших бактерий, которые способны питаться сырой нефтью и таким образом справляться с нефтяными пятнами, которые возникают в океанах после аварий с танкерами. В последнее время мы даже могли прочесть о «коллективной беременности», которую также называют термином «перенос эмбриона» и которая заключается в том, что оплодотворённая яйцеклетка одной женщины пересаживается другой, ранее бесплодной. Эти и другие «премьеры» позволяют мне предполагать, что для клонирования людей не нужно будет ждать двести лет, как считают специалисты-пессимисты.

Однако споры вокруг клонирования для последующего обсуждения имеют второстепенное значение. Когда я в 1962 году писал «Сумму технологии», я затронул другую тему, которую Колаковский также посчитал фантазией, а именно идею о том, что, как он её сформулировал, «инженеры будут конструировать новые планеты в далёких туманностях». На самом деле я написал одновременно и меньше, и больше, чем утверждал Колаковский. Цитирую: «Дерзостью было бы (…) стремление к тому, чтобы не пользоваться материалами Природы, не строить ничего в её недрах, а руководить ею, то есть взять в свои руки эволюцию – уже не биологическую или гомеостатическую, а эволюцию всего Космоса. Вот такой замысел – стать кормчим Великой Космогонии (…) – вот это было бы уже дерзостью, достойной изумления. Но о такого рода замыслах мы вовсе не будем говорить. Почему? Может быть, потому, что это совсем, так-таки совсем и навсегда невозможно? Вероятно. Но всё же это очень интересно. Поневоле начинаешь думать: откуда взять энергию для того, чтобы пустить преобразования по желательному руслу, (…) как добиться того, чтобы Природа обуздывала Природу, чтобы она при вмешательстве лишь регулирующем, а не энергетическом сама себя формировала и вела туда, куда сочтут нужным подлинные – вернее, всевластные – Конструкторы путей Вселенной. Обо всём этом, однако, речь идти НЕ будет»[11 - Лем С., Сумма технологии. – М.: АСТ, 2018, с. 430. Удивительно, что столь здесь важное для Лема в цитате последнее предложение отсутствует во всех русских переводах, вместо него – многоточие.].

Так что после того, как я отважился на идею о «космогонической инженерии», я сразу же отверг эту идею как нереальную. Мимолётно я вернулся к ней в 1968 году в романе «Глас Господа», но там она звучит в дискуссии физиков как радикальное мнение и отклоняется другими теоретиками, далее не развивается. Только в 1971 году она стала главной темой для рассказа «Новая Космогония», который вошёл в том «Абсолютная пустота»[12 - См.: Лем С., Библиотека XXI века. – М.: АСТ, 2002 и др., с. 189–220.].

Таким образом, только с помощью литературы я восстановил уверенность в себе, так как «Новая Космогония» – это доклад, который мой герой, учёный, произносит по случаю вручения ему Нобелевской премии как раз за эту Новую Космогонию. Речь идёт о представлении Космоса, который с древних времён формируется Разумом, то есть Высшими Космическими Цивилизациями, которые вовлечены в непрекращающийся процесс – в своего рода совместные усилия по преобразованию Природы желаемым образом. «Новая Космогония», в свою очередь, не получила отклика критиков ни как литературная фантазия, ни как гипотеза, требующая серьёзного анализа. Тем большим было моё удивление, когда в еженедельном журнале «New Scientist» от 23 марта 1978 года я обнаружил главу из недавно вышедшей книги «The Runaway Universe»[13 - «Расширение Вселенной» (англ.).] доктора Пола Дэвиса, главу, в которой описывается Космос далёкого будущего, полностью преобразованный в технологический продукт. «Расширение Вселенной» – это научно-популярная работа, которая представляет текущее состояние космогонического и космологического знания. Считается, что Вселенная зародилась во время «Большого Взрыва» (Big Bang) полтора десятка миллиардов лет назад, который дал импульс для разбегания от центра туманностей, которые никогда снова не соберутся вместе, а, в последующие миллиарды лет всё больше удаляясь друг от друга, будут перемещаться через космические пространства до тех пор, пока энергия всех звёзд не будет сожжена и не угаснет – и вся расширяющаяся дальше Вселенная будет только всё более слабой метелью из мёртвого, остывшего пепла.

Таким образом, судя хотя бы по неизбежному процессу возрастания энтропии, всю жизнь в космосе ждёт неумолимое уничтожение. Избежать его нельзя, но Дэвис видит возможность продлить жизнь высокоразвитых цивилизаций даже на миллиарды лет, если они смогут обосноваться недалеко в астрономическом масштабе от «Больших чёрных дыр», которые формируют ядра галактик, и сделать для себя доступной энергию этих «дыр». Эту деятельность Дэвис называет «сверхтехнологией» (и так же – «Сверхтехнологией» – он назвал самую идейно смелую главу своей книги).

Картина, которую описал английский учёный, удивительна похожа на картину, которую создаёт моя «Новая Космогония». Цитирую Дэвиса: «Мы привыкли думать о гравитации, ядерной физике, электромагнитных полях, химии и так далее как о доминирующих силах, которые реструктуризируют и приводят в порядок Вселенную. Однако биология тоже играет в этом свою роль: поверхность Земли значительно изменилась в результате биологической активности. (…) Разумная жизнь и технологии привели к ещё более радикальным планетарным преобразованиям: горы сровняли с землёй, в морях и на реках были установлены дамбы, леса были уничтожены и пустыни орошены. Могут существовать ещё более высокие, чем у подобных технологий, уровни организующей деятельности, основанные на разуме биологических организмов, которые способны на ещё более сложные и комплексные достижения, но в любом случае было бы неразумно делать предположения о пределах сверхтехнологий. В этой связи возникает перспектива Вселенной, для которой на протяжении большей части её существования доминирующей силой является интеллектуальное управление. На более поздней стадии космической эволюции интеллект как космическая организующая деятельность в конечном счёте может считаться таким же естественным и таким же основополагающим, как и гравитация».

Каждому, кто читал «Новую Космогонию», приведённая цитата может показаться позаимствованным оттуда фрагментом. Даже то последовательное развитие, сначала вводящее в действие биологические силы против Природы, на которую потом воздействует планирующий Разум, кажется взятым из моего фантастического текста. Как это могло случиться? Что произошло на самом деле? Не что иное, как то, что мальчик, играющий в песочнице со своей лопаткой, нашёл товарища, который, как и он, хотел бы прокопать насквозь земной шар. При этом второй мальчик является дипломированным знатоком небесных тел.

2. Литература как убежище

Эти высказывания не должны ни подтвердить моё право на идею «космоса как технологии» в качестве первого, кто её высказал, ни возобновить после четырнадцатилетней задержки полемику с Колаковским. Образ подчинённого Разуму Космоса не стал более походить на правду из-за того, что эту мысль высказали второй раз. Идея может быть совершенно неверной, даже если её приняло большинство астрофизиков Земли. В задаче, которую я ставлю здесь перед собой, речь не идёт ни о точности идеи, ни о её авторстве, а только о демонстрации на конкретном примере судьбы определённой «радикально новой идеи».

Первый критик, который открыто отметил её, является философом. Он посчитал её фантазией, необоснованно и ошибочно предложенной в качестве реальной возможности, и упрекнул автора в смешении понятий, сравнивая его с ребёнком. Но философ не является экспертом в космогонии, не является ли его возражение результатом недостаточной компетентности? Думаю, что нет. Давно было замечено, что умные дилетанты, любители и аутсайдеры более восприимчивы к новым идеям, чем знатоки предмета, поскольку по-настоящему новая идея сталкивается с набором установленных знаний, и одно из главных обязательств специалистов заключается в защите этих знаний. Если бы наука поспешно ассимилировала каждую концепцию, которая не совпадает с её каноническими суждениями, она бы вскоре распалась на множество независимых школ. Наука должна быть до определённой степени консервативной, она должна оказывать упорное сопротивление революционным гипотезам, она должна проявлять медлительность, доходящую до нерешительности, в их признании, потому что в этом проявляется её инстинкт самосохранения в качестве института знаний. Специализированные журналы каждой науки, от физики до антропологии, прямо-таки кишат новыми, не соответствующими канонам установленных знаний гипотезами, и если бы они вскоре стали равноправными со священными, то эта область знаний до основания была бы разорвана на множество противоречащих друг другу взглядов и мнений. Ошибается тот, кто считает, что обильным распространением новых идей, а именно тех, которые противоречат основам принятых знаний, выделялись скорее «молодые» дисциплины, такие как этнология и биология, не говоря уже о гуманитарных науках, чем более старые и точные, как астрономия и физика. Новых идей хватает во всех областях науки, просто не везде они наталкиваются на сильное сопротивление. Впрочем, величину этого сопротивления нельзя измерить, можно только интуитивно сказать, что оптимальный темп развития требует такого сопротивления «новинкам», которое не является ни слишком большим, ни слишком малым. Если оно слишком мало, как в гуманитарных науках, то вместо непрерывного накопления знаний возникают модные приливы и отливы, причём каждая новая мода стремится стать диктатурой с ожесточёнными искоренениями, как происходит (точнее, слава богу, происходило) со структурализмом и его отношением к общему наследию традиционных гуманитарных наук. Вместе с тем, если сопротивление нововведениям растёт чрезмерно, как это происходило с физикой в начале двадцатого столетия, то новые идеи должны бороться за признание слишком долго, вследствие чего внутри прежней ортодоксальности дело доходит до бесплодия и застоя. Обычно «порог инертности» преодолевается даже при продолжительном сопротивлении радикальной концепции, как только совокупная сила множества полученных из опыта фактов всё больше будет свидетельствовать в пользу концепции. Там, где решающий опыт (experimentum crucis) возможен сразу, сопротивление ломается наиболее быстро. Там же, где о таком эксперименте не может идти речи, как в космологии и космогонии, где исследователям, исходя из свойств исследуемого, отводится роль скорее пассивного наблюдателя и где доказательство истинности одной группы длинных логических цепочек понятий равносильно доказательству для альтернативной группы таких логических конструкций, размер сопротивления, оказанного нововведениям, варьируется и зависит от совсем посторонних для этой науки факторов. Я не могу это доказать, но считаю, что поспешность, с которой в последнее время многие физики, астрофизики и математики приступили к работе над «дедуктивной фантасмагорией» «чёрных дыр» (им посвящают монографии, хотя никто до сих пор достоверными методами не обнаружил ни одной), связано с «ускорением цивилизации» и в особенности с её собственной изменчивостью общественных норм.

Я не утверждаю, что то, что происходит вне науки, влияет на метод, применяемый в ней. Если бы теория относительности возникла только сегодня, её точно так же нужно было бы доказать с помощью экспериментов, как шестьдесят лет назад. Однако я предполагаю, что эта теория, если бы была объявлена сегодня, не так долго, как тогда, должна была бы ждать признания своих прав в науке. Учёные живут не за пределами общества, которое уже привыкло к большим изменениям. Наука великолепно развивается в государствах, в которых портятся нравы, где традиционные ценности умирают и традиционно осуществляемая внутренняя политика вступает в кризис. И это потому, что методы научного познания нельзя заменить другими, менее ригористическими, то есть их значение постоянно, в то время как многие традиционные ценности «цивилизации вседозволенности» проявляют тенденцию к ослабеванию. Это может быть причиной, казалось бы, парадоксальной ситуации, что мир на Западе, который деградирует в культуре, в то же время идёт впереди в мировой науке. В этом мире наука оказывает новым идеям меньшее сопротивление, чем в начале столетия.

Тем не менее мы до сих пор не знаем, хотя это звучит странно, в чём по сути состоит процесс «понимания новой идеи». Что, собственно, означает «понять новую мысль» в сфере познания? Для этого недостаточно ни знания языка, на котором она сформулирована, ни университетского диплома. Первой реакцией человека на такую новость является нежелание принимать её в качестве важной, что проявляется в виде пренебрежения или равнодушия. Поэтому часто идея получает дисквалифицирующее неприятие прежде, чем её поймут со всеми меняющими картину мира последствиями.

Так было с «чёрными дырами». Каждая звезда пребывает в равновесии, центробежно растягиваясь посредством излучения и центростремительно сжимаясь под действием гравитации. Если перевешивает излучение, то звезда раздувается, если же перевешивает гравитация, то она сжимается. Чтобы произвольный объект смог преодолеть притяжение звезды, ему нужно придать определённую скорость, так называемую скорость убегания. Сжимающаяся звезда становится всё меньше при той же массе, поэтому скорость убегания от её поверхности растёт до тех пор, пока не должна стать больше, чем скорость света. Так возникает «чёрная дыра», сковывающая даже свет. Чтобы набросать её математическую модель, не требуются исключительные способности. Достаточно решить школьную задачу: какой должна быть скорость убегания с поверхности звезды, которая постоянно сжимается? Простые арифметические действия показывают, что эта скорость в конечном счёте превысит скорость света, и тогда звезда исчезнет для всех наблюдателей, как будто она сдулась. Именно это и есть критическая точка для возникновения «новой идеи», а именно «чёрной дыры», потому что нельзя удовлетвориться полученным результатом, а нужно ставить следующий вопрос: что происходит с этой звездой тогда, когда её не может покинуть ни один луч света?

Задачу о коллапсе звезды студенты-физики решали на семинарах, но ни им, ни их учителям не пришла в голову мысль сделать следующий шаг, потому что все они в равной мере считали такой шаг абсурдным. Даже когда его сделал Шварцшильд, когда он ввёл понятия «горизонта событий», критической массы коллапса и т. д., «чёрную дыру» считали математической фикцией, не имеющей аналогов в реальности. Более того, даже сам Шварцшильд не настаивал на том, что «чёрные дыры» не только существуют, но и могли бы сыграть такую огромную роль в эволюции Вселенной, которую им приписывают сегодня. Так что до конца шестидесятых готов революционное для космологии открытие оставалось скрытым, оно было опубликовано, но его физические последствия не были изучены. Только десятилетия спустя Стивен Хокинг задал в принципе очень простой вопрос: как на самом деле должна вести себя «чёрная дыра» с точки зрения термодинамики? Конечно, как подтверждает само её название, она может свет поглощать, но не может его излучать, поэтому она ведёт себя как уже давно известный в термодинамике объект, а именно «абсолютно чёрное тело». Если это так, то с ней можно обращаться как с такими телами, в результате чего возник широкий фронт теоретических исследований, увенчанный богатой типологией «чёрных дыр», микроскопических и гигантских, ибо образующих ядра галактик, при этом становилось всё более очевидным их существенное влияние на эволюцию Космоса. Как видно, «новая идея» может быть доведена до сведения специалистов, но не заставит их действовать, потому что никто не рассматривает идею с необходимым вниманием и серьёзностью, её значение с полным потенциальным радиусом действия обычно не понимает даже тот, кто её первый сформулировал.

Si parva magnis comparare licet[14 - Если можно малое сравнить с великим (лат.).], примером этому может служить история моей идеи – «технологической космогонии». Я относился к этой едва сформулированной мысли с тем же недоверием, с каким каждый человек относится к концепции, противоречащей его основным убеждениям. Я не доверял ей ещё больше, потому что её автором был я сам, а не какой-нибудь авторитет, чьи слова заслуживают уважения. Ведь легче говорить увлекательные глупости, чем изречь правильную мысль, до которой до сих пор ещё никто не додумался. Поэтому я сразу же отошёл от этой слишком смелой концепции.

Если рассматривать всю «Сумму технологии» в целом, то эта концепция оказывается прямо-таки логическим следствием включённых в книгу рассуждений, высшим и последним измерением операций, к которому может стремиться инструментально действующий Разум. Если обсуждать все мыслимые инженерные задачи, от самых маленьких до самых масштабных, то следовало бы и следует ради полноты системы добавить и «задачу-максимум»: реорганизацию Вселенной. Хотя бы только для того, чтобы её проанализировать и убедиться в её неосуществимости. Однако я совсем не думал о такой задаче. В это трудно поверить, тем более что название соответствующей главы – «Космогоническое конструирование» – кажется, отчётливо возвещает о «технически переделанной Вселенной». Тем не менее это было не так. «Космогоническое конструирование», как описывает его соответствующая глава, должно быть задачей другого, гораздо более скромного масштаба. В нём речь идёт о выделении фрагмента реальности, о создании особого анклава в реальном мире, чтобы в нём мог возникнуть определённый «суверенный искусственный мир». Зачем? Моя мысль направилась к тому, чтобы дать максимальную автономию процессам типа тех, которые имитируют природные явления в вычислительных машинах. Идеальная имитация явления должна стать независимой, стать «реальностью особого рода». Началом пути была для меня вычислительная машина, которая, например, имитирует эволюцию жизни, а концом пути – независимая от внешнего мира система, которая включает в себя «искусственный мир» и его «искусственных жителей». Одним словом, речь шла о преобразовании «имитации» в «созидание», подражания в сотворение, потому что это один из лейтмотивов всей книги.

Только при написании книги мне вдруг пришла в голову гораздо более мощная концепция «Космоса как Технологии», поэтому я высказал её только в отступлении и немедленно отверг. Это было критическим моментом для «новой идеи». Она казалась мне настолько невероятной, что не заслуживала более тщательного изучения. И я никогда не возвращался к ней в небеллетристических книгах.
<< 1 2 3 4 5 6 7 8 >>
На страницу:
6 из 8