Оценить:
 Рейтинг: 0

Все науки. №1, 2023. Международный научный журнал

Год написания книги
2023
<< 1 2 3 4 5 6 7 8 ... 10 >>
На страницу:
4 из 10
Настройки чтения
Размер шрифта
Высота строк
Поля
Annotation. The article discusses the principles of constructing an optoelectronic device for monitoring the concentration of CO2 gases. Intense absorption lines of CO2 gases have been determined. The optoelectronic device uses LEDs based on GaAlAsSb/GaInAsSb/GaAlAsSb (3.12 microns) as the emitting diode at the reference wavelength, and LEDs based on GaAlAsSb/GaInAsSb/GaAlAsSb (3.39 microns) as the emitting diode at the measuring wavelength.

Keywords: gas analyzer, carbon dioxide, control, flowchart, time diagrams.

В последние годы все большее внимание привлекают проблемы использования чистых нетрадиционных возобновляемых источников энергии (НВИЭ) для нужд энергоснабжения различных сельскохозяйственных и промышленных объектов. Актуальность и перспективность данного направления энергетики обусловлена двумя основными факторами: катастрофически тяжелым положением экологии и необходимостью поиска новых видов энергии.

Достигнутые успехи в создании ветровых, солнечных и ряда других типов нетрадиционных энергоустановок широко освещены в различных работах, в последнее время большое внимания уделяется геотермальной энергетики. Перспективы использования энергии тепла Земли поистине безграничны, поскольку под поверхностью нашей планеты, являющейся, гигантским естественным энергетическим котлом, сосредоточены огромнейшие резервы тепла и энергии.

На сегодняшний день в Узбекистане активно развивается геотермальная энергетика. На территории Узбекистана прогнозные геотермальные ресурсы на доступных глубинах (до 5—6 км) в 4—6 раз превышают ресурсы углеводородов. Главными потребителями геотермальные ресурсы на ближайшую и отдаленную перспективу в Узбекистане, несомненно, будут теплоснабжение и, в значительно меньшей мере, выработка электроэнергии.

По абсолютному значению из всех видов возобновляемой энергии наибольшим интегральным энергетическим потенциалом располагают недра Узбекистана в виде тепла сухих горных пород (петротермальные ресурсы) и крупных бассейнов с гидротермальными водами.

Геотермальные воды имеются во всех регионах Узбекистана. Многолетние изыскания позволили выявит на его территории 8 крупных бассейнов с гидротермальными ресурсами. Валовый потенциал геотермальных вод оценивается в 171 тыс. т.н. э. Однако технический потенциал геотермальных источников пока не определен. Наибольшим потенциалом геотермальных вод обладают Ферганская долина и Бухарский вилоят. Средняя температура геотермальных вод по республике составляет 45,5 °С, наиболее теплые воды в Бухарском (56 °С) и Сырдарьинском (50 °С) вилоятах. Следует отметить, что практическая реализация энергии геотермальных вод связана с разработкой соответствующих природоохранных мероприятий, обусловленных их химическим составом. В стране также выявлены петротермальные энергоресурсы в виде сухих горных пород с температурой от 45 до 300 °С. Реализация потенциала петротермальной энергии (тепло сухих пород, гранитоидов) может быть осуществлена с помощью электростанций на низкокипящих рабочих телах с мощностью блока 40 МВт на базе Чустско-Адрасмановской петротермальной аномалии в Ферганской долины [1].

Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года [2—3]. Геотермальная энергия своим «проектированием» обязана раскаленному центральному ядру Земли, с громадным запасом тепловой энергии. Только в верхнем трехкилометровом слое Земли запасено количество тепловой энергии, эквивалентное энергии примерно 300 млрд. т угля [4].

На рис.1. представлена диаграмма использования геотермальных ресурсов.

Рис.1. Диаграмма использования геотермальных ресурсов

Геотермальная энергия широко и с успехом используется в самых разных отраслях народного хозяйства. Существуют очень широкие перспективы для расширения сферы его применения:

– теплоснабжение (отопление и горячее водоснабжение) гражданских и промышленных зданий и сооружений;

– теплоснабжение сельскохозяйственных объектов (теплиц и парников как круглогодичного, так и сезонного времени действия, рыборазводные водоемы, птичьи фермы и пр.);

– удовлетворение в тепле технологических процессов промышленных предприятий (сушка древесины для мебельного производства, ферментация чайного листа и пр.);

– удовлетворение коммунально-бытовых нужд населения (бани, плавательные бассейны, прачечные и пр.);

– бальнеологические цели; производство электроэнергии.

Геотермальные ресурсы имеют несколько составляющих: их можно рассматривать одновременно как источник электрической и тепловой энергии и как источник ценных химических соединений: аморфный кремнезем, B, Li, Zn, Mn, HS, NaCl, геотермальные газы H

S, CO

.

Данные по химическому составу геотермальных ресурсов показывают наличие в них геотермальных газов (H

S, CO

) [4], контроль концентрации которых значительно облегчает их освоения и поиск новых источников минерального сырья.

Как известно в диапазоне 1,7—4,8 мкм находятся интенсивные линии поглощения геотермальных газов CO

. Развитие оптоэлектроники и её элементной базы, создание новых высокоэффективных полупроводниковых источников излучения создают предпосылки для разработки высокочувствительных и точных, надежных приборов для контроля концентрации геотермальных газов (H

S, CO

).

В данной работе предложено устройство для контроля концентрации геотермальных газов.

Блок схема оптоэлектронного устройства для контроля концентрации геотермальных газов приведено на рис.1, а на рис.2 приведены её временные диаграммы.

Устройство для контроля геотермальных газов содержит источник питания 1, генератор прямоугольных импульсов с двумя противофазными выходами 2, к одному выходу которого подключен делитель частоты 3 (последовательный счетчик), выход которого через одновибратор 4 соединен с управляющим входом модулятора 5 экспоненты, эмиттерный повторитель 6, два электронных ключа 7 и 8, излучающие диоды рабочий 9 и опорный 10, излучающие на опорной и рабочей длинах волн соответственно, газовую камеру 11, фотоприемник 12,соединенный с первым дифференцирующим устройством 13, выход которого через пороговое входом схемы совпадений 15, первый вход которой подключен к выходу второго дифференцирующего устройства 16, вход которого соединен с излучающим диодом 10, счетчик 17, счетный вход которого соединен с выходом схемы совпадений 15, а его вход «установка нуля» соединен с выходом одновибратора 4.

Газовую камеру 11 облучают двумя потоками излучения Ф

и Ф

на опорной l

и рабочей l

длинах волн соответственно. Прошедшие через газовую камеру потоки излучения будут равны соответственно:

(1)

где: Ф

и Ф

 – подающие на газовую камеру потоки излучения на длинах волн l

и l

соответственно, Ф

Ф

 – потоки излучения после прохождения через после прохождения через газовую камеру на длинах волн l

и l

соответственно,

N

 – концентрация смеси газообразных веществ,

L – длина оптического пути, т.е. длина газовой камера,

N

 – концентрация определяемого газообразного вещества,

К

<< 1 2 3 4 5 6 7 8 ... 10 >>
На страницу:
4 из 10