Оценить:
 Рейтинг: 0

Водолазная электроника

Год написания книги
2018
<< 1 2 3 4 >>
На страницу:
2 из 4
Настройки чтения
Размер шрифта
Высота строк
Поля

1.3. Электрические свойства водной среды

1.3.1. Чистая дистиллированная вода является диэлектриком и не проводит электрический ток. Однако в природе дистиллированной воды практически не бывает. Даже в пресной речной воде растворены различные соли, которые делают её электропроводной.

Морская вода имеет солёность от 20 до 35 промиль и является хорошим проводником электрического тока. В ней растворены соли натрия, кальция и др. металлов. Сопротивление морской воды составляет около 2 Ом. Это приводит к тому, что все электрические приборы, которые теряют герметичность и в них проникает морская вода, быстро выходят из строя. Особенно часто затекают контактные разъёмы аппаратуры. За ними нужен постоянный контроль и уход (смазка вазелином, циатимом-201 или специальной консистентной смазкой). По возможности следует применять бесконтактные индукционные разъёмы.

Если морской водой залит силовой разъём аккумуляторной батареи, то возникает короткое замыкание. Электролит в аккумуляторных банках может закипеть. Возникает большое количество газов. В аккумуляторном отсеке повышается давление, что может привести к взрыву. Взрыв под водой очень опасен для водолаза, поскольку может привести к баротравме лёгких.

1.3.2. Высокую электропроводность воды в 80-х годах прошлого века пытались использовать для связи между водолазами. Для этого в г. Омске была изготовлена аппаратура «Бастион» (в корпусе станции гидроакустической связи МГВ-6В). На гидрокостюм водолаза наклеивались электроды из алюминиевой фольги (на ноги и руки). Через воду пропускался электрический ток от микрофонного усилителя водолаза. Аппаратура другого водолаза принимала сигнал на такие же электроды, (чувствительность 1 мкВ.) усиливала его и подавала на телефоны.

Испытания аппаратуры проводились на Каспии в г. Баку (автор книги участвовал в этих испытаниях от 40 ГНИИ МО). Они показали, что при выходной мощности 5 Вт. связь между водолазами возможна на расстоянии до 25м. При увеличении антенной базы до 50м. (электроды – корпус водолазного катера и подвешенная за ним на буйке металлическая пластина) дальность связи увеличивалась до 150м. Антенны улавливали гальванические токи растекания, которые создавали металлические пластины-электроды.

Дело в том, что силовые линии тока отталкиваются друг от друга из-за одинакового заряда движущихся в воде электронов (ионов). Поэтому они образуют широкий веер силовых линий между двумя полюсами. Это и позволяет принимать сигнал другому водолазу или катеру.

В целом, испытания признаны успешными, но дальность связи – недостаточной. Поэтому аппаратура серийно не выпускалась.

1.3.3. По причине своей высокой электропроводности морская вода почти не пропускает радиоволны. Они затухают в ней, образуя вихревые токи Фуко. Чем выше частота, тем сильнее затухание. В пресной воде (река, озеро) длинные радиоволны проникают в воду на глубину до 3 – 5 м. (работает радиоприёмник в СВ и ДВ – диапазонах). В море длинные волны проникают на глубину нескольких сантиметров. Сверхдлинные волны (длиной в несколько километров) проникают в морскую воду на глубину до 40м. Этим пользуются подводные лодки, для приёма сигналов с береговых постов связи.

Водолазов интересуют сверхкороткие радиоволны СВЧ—диапазона. Они применяются в системах спутниковой навигации GPS / ГЛОНАСС и в роутерах Wi-Fi. Такие радиоволны могут приниматься только антеннами, находящимися в надводном положении.

Антенна может подниматься над водой рукой водолаза при подвсплытии или пенопластовым буйком, соединённым гибким кабелем с приёмной аппаратурой, при движении водолаза на ПСД. Возможна связь водолазов с береговыми службами с помощью радио-гидроакустического маяка (рис. 3).

В этом случае, водолазы принимают гидроакустические сигналы маяка, а он принимает радиосигналы с берега и ретранслирует на берег сигналы водолазов или их приборов.

Рис. 3. Радио-гидроакустический маяк для ретрансляции сигналов водолазов или показаний их приборов.

Радио-гидроакустический маяк также может использоваться для управления с берега автономным необитаемым подводным аппаратом.

Глава 2. Подводная навигация

Существует несколько способов определения места водолаза и подводных средств движения (ПСД) под водой:

– плавание по счислению;

– ориентация (определение места) по спутниковой навигационной системе GPS или «ГЛОНАСС» при подвсплытии;

– ориентация по гидроакустическим маякам.

2.1. Плавание по счислению

Является наиболее простым и наименее точным методом определения места водолаза, при плавании на ластах или на подводных средствах движения (буксировщиках, носителях водолазов).

В начале определяются координаты точки погружения водолаза. Они могут быть привязаны к географической карте или к точке определения места по GPS – ГЛОНАСС на маневренном планшете.

Затем координаты заносятся в систему счисления, и прокладывается траектория движения водолаза. В простейшем случае это может быть курс по магнитному компасу.

Далее счисление места может вестись по показаниям лага, компаса и глубиномера. Если лага нет, то используются часы и скорость, определённая на мерной линии для данного режима (темпа) движения. Эти показания перемножаются и дают пройденную дистанцию.

2.1.1. Навигационные приборы счисления места первого поколения

В ХХ веке в нашей стране был создан ряд навигационных приборов, позволяющих вести счисление места водолаза. Так, в начале 70-х годов в Советском Союзе (НИИ ШП «Дельфин», г. Ленинград) был создан навигационный прибор водолаза НПВ-2 (рис. 4).

Рис. 4. Буксировщик водолаза «Протон» с навигационным прибором водолаза НПВ-2.

Цифрами на рисунке обозначены: 1 – прибор НПВ-2; 2 – магнитный компас «Дружба»; 3 – часы «Восток-амфибия»; 4 – глубиномер Г-5; 5 – индикатор скорости и дистанции; 6 – место для плёночного планшета.

Прибор имел в своём составе магнитный компас, часы, глубиномер и механический (вертушечный) лаг, который измерял скорость при помощи вращающегося набегающим потоком воды винта. Он же измерял и пройденную дистанцию. Прибор устанавливался на всех видах буксировщиков и мог буксироваться водолазом вручную. На передней площадке прибора НПВ-2 мог быть закреплён плёночный планшет с картой и оптическим пеленгатором (съёмным).

В 2008г. (после перестройки) были проведены межведомственные испытания подводного навигационного прибора УПН-1 (производства Котав-Ивановского завода).

Навигационный прибор УПН-1 (рис. 5) позволяет определять:

– направление по магнитному компасу в подводном и надводном положениях;

– путь и скорость по механическому лагу;
– глубину по глубиномеру;
– время по электронным часам.

Рис. 5. Навигационный прибор водолаза УПН-1.

Цифрами на рисунке. обозначены: 1 – поворотные ручки с источниками питания для подсветки приборов; 2 – электронные часы и лаг; 3 – магнитный компас; 4 – глубиномер; 5 – место для маневренного планшета.

Технические характеристики навигационного прибора УПН-1:

– максимальная глубина погружения – до 40 м;

– время непрерывной работы – не менее 10 часов;

– точность курсоуказания по магнитному компасу – не менее +1?;

– точность определения глубины – 1 м;

– погрешность определения пути и скорости – не более 2%;

– два уровня подсветки приборов;

– съемный планшет для маршрутного задания;

– масса – 3 кг.

Рис. 6. Плавание на буксировщике «Протон-С» с навигационным прибором УПН-1.

Навигационный прибор УПН-1 может применяться водолазом автономно, в дневное и ночное время (с использованием подсветки). Органы управления рассчитаны на работу в водолазных перчатках. Навигационный прибор УПН-1 имеет цифровую калибровку лага.

Недостатками указанных выше приборов счисления первого поколения являются:

– постоянно нарастающая ошибка счисления места при продолжительном плавании;

– сложность точного учёта погрешностей магнитного компаса (девиации и склонения);
<< 1 2 3 4 >>
На страницу:
2 из 4