Оценить:
 Рейтинг: 0

Властелин механики. 7 великих законов в понятном изложении

<< 1 2 3 4 5 6 7 >>
На страницу:
3 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

Современная физика не способна на него ответить полностью. Слишком много заковырок и противоречий. Самое значимое из них – что именно в пространстве является носителем энергии? Это атом или молекула? А как тогда быть с процессами, где не участвует как таковое вещество? Там энергии нет, потому что её негде сохранить? Как дела с тепловой энергией? Вопросов очень много, а ответов очень мало. Именно поэтому пока стоит отстраниться от поиска правильного ответа и обратиться к существующему определению. Тем более, что для нас сейчас наибольший интерес представляет механическая энергия и воспринимаем мы её только как некоторую величину.

Стандартное определение понятия в физике, всё же, существует. Им и будем пользоваться для дальнейшего объяснения. Более глубокие мысли хоть и интересны, но уже выходят за границы раздела механики и к ним мы вернемся в других работах.

Энергия – скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. С древнегреческого языка оно переводится как действие.

Если опустить ряд сложностей, которые не особенно и нужны для понимания применительно к механическим процессам, то всё равно разобраться будет не так-то просто. Перечитав это определение несколько раз, вы вероятно так и не поймете, о чем там написано. Давайте разобьем стандартное определение на фрагменты, а после этого запишем его в более понятной и простой форме.

Скалярная – означает не имеющая направления. Про это поговорили в самом начале книги. Но давайте закрепим на будущее. Это величины, как масса тела или атмосферное давление. Они просто есть и не связаны с движением. Для сравнения – скорость величина векторная, имеет направление. Чувствуете разницу между скоростью и массой? Вот именно такая разница и между векторными и скалярными величинами.

Следующая часть определения говорит, что мы имеем дело с некоторой мерой взаимодействия тел. Причем, применительно к любым видам взаимодействия. Но нас сейчас интересует механика. И тут уместно назвать это именно что «мерой взаимодействия».

Представьте, что вы поддали мячик ногой. Вы передали мячику что-то и это что-то потом начало оказывать воздействие разных типов. Что-то и есть энергия. Или «движение» если обратиться к переводу слова. Его иначе не назовешь. Вот и придумали фразу про меру воздействия, добавив её в определение энергии.

Ещё можно представить камень, который падает кому-то на голову с крыши. Сразу вспоминается великолепный эпизод из фильма «Один дома 2», где Кевин кидается кирпичами в Марва. Вот летящий камень обладает чем-то, что он потом передаст голове нашего отрицательного героя. Это что-то и есть энергия. Или вновь подойдет слово движение. Почему мы так размыто разъясняемся? Наверное потому, что даже механическую энергию, которая наиболее проста для восприятия, пока всё ещё не могут описать в полной мере и дать однозначное определение понятия.

Но для наших целей достаточно указанного выше определения. В целом-то, воспринимать слово механическая энергия, как слово «движение» вполне допустимо. Будут проблемы с представлением потенциальной энергии сжатой пружины, но там мы скажем, что сжатая пружина запасла некоторое количество движения и опять логику передадим.

Закон сохранения энергии в кино и философии

Закон сохранения энергии описывается разными словами и носит разные имена. Интересно отметить, что логика сохранения энергии пронизывает многие философские книги и даже современные фильмы.

Например, в фильме «Звёздные войны» присутствует такая характеристика, как сила. Силой там именуется некоторая субстанция, которую можно использовать как во благо, так и во вред. Но сама по себе сила нейтральна.

Очень легко провести параллели между силой в этом фильме и энергией в нашей жизни. Ведь по философским представлениям, да и по физическим законам, появившимся чуть позже, энергия во вселенной не появляется и не пропадает, а просто превращается из одной формы в другую форму. Аналогично этому представлению, герои Звездных войн как раз-таки и использовали силу, которая не появлялась и не пропадала, а только передавалась от одного объекта другому.

Подобный процесс передачи энергии или силы демонстрировался в некогда популярном фильме «Горец». Когда бессмертному отрубали голову его энергия передавалась победителю в виде разряда молнии.

Рис.12. Молния передает нечто, что мы называем энергия

В философии понятие «энергия» встречается очень часто и только ленивый не попробовал как-то объяснить происходящее. Античные философы описывали энергию как нечто, способное совершать работу и имеющее внутри себя силы. Примерно так описывал это Аристотель.

Фома Аквинский характеризовал энергию как акт чего-либо. Обеспечение процесса живительным действием.

Ну а «божественные теории» относительно термина энергия встречаются в философии регулярно.

Так, сила, которой обладают боги, тоже подходит под определение энергии. Люди могли обратиться к богам и попросить у них эту силу, а сила передавалась и превращалась бы в другие формы деятельности. Например, в случае языческих представлений, она переходила в рост урожая или приводила к появлению дождей.

Сколько убыло столько и прибыло

Физика выделяет разные виды энергии. Они могут неограниченно превращаться из одного вида в другой. Если в одном процессе энергия израсходована, то в другом смежном процессе её гарантированно стало больше. Но об этом чуть позже. Сейчас же запомним, что энергии характерны превращения из одного вида в другой.

Ударьте рукой по столу. А теперь проанализируйте, куда именно была израсходована энергия удара и как она превращалась из одной формы в другую.

Рис.13. Превращение энергии при ударе рукой по столу

Понятие превращения энергии одно из самых важных в физике. Причем, вне зависимости от раздела. Понятно, что нам сейчас интересна механика, но все принципы работают и в других сферах.

Энергии свойственно переходить из одной формы в другую. Относительно механики выделяют два основных типа энергии. Есть ещё третий, который относится к другому разделу физики из-за своей природы, но на механические процессы также оказывает влияние.

Виды энергии применительно к механике

В механике обычно выделяют два основных вида энергии. Это кинетическая и потенциальная энергии. Есть ещё внутренняя энергия. Это тот самый третий вид, про который мы упомянули. Она тоже частенько трётся где-то рядом, но к механической энергии как такового отношения не имеет.

Правда в задачах, да и в стандартных жизненных ситуациях, связанных с механическим взаимодействиями, внутренняя энергия всегда фигурирует.

Внутренней энергией называется энергия, которой обладает структура тела, его атомы и молекулы. При взаимодействиях этих частиц происходит повышение температуры изучаемого тела. Так, ударив молотком по гвоздю, мы повысили внутреннюю энергию гвоздя посредством механического воздействия. Это воздействие вызвало чехарду в структуре тела и взаимных движениях части внутри него, что привело к нагреванию.

Теперь подробнее про кинетическую и потенциальную энергии.

Кинетическая энергия – та энергия, которой обладают движущиеся тела. Вот, собственно говоря, и всё. Летит в нас мячик и мячик имеет кинетическую энергию, которая будет частично передана нам при ударе.

Рис.14. Летящий мячик обладает кинетической энергией

Всегда, когда речь заходит о кинетической энергии, мы имеем дело с движением. Не случайно кинетическая энергия рассчитывается по формуле:

В расчёте участвует скорость, которая обозначена тут буквой V. Само собой, масса (m) тоже будет присутствовать в этом расчёте. Ведь чем массивнее тело, тем сильнее оно может ударить или, говоря научным языком, тем большее количество энергии оно может запасти при движении с некоторой скоростью.

Потенциальная Энергия – это энергия, которая есть у покоящегося тела и которая может высвободиться при изменении некоторых условий.

Рис.15. Наковальня висит на веревке и обладает потенциальной энергией, а если её отрезать, то энергия высвободится

Представим себе, что на ниточке подвешен камень. Пока камень подвешен, он обладает потенциальной энергией. Если камень начнет вдруг падать, то эта потенциальная энергия высвободится. Высвобождение будет сопровождаться превращением потенциальной энергии камня в его кинетическую энергию. Ведь у него появится и скорость, и масса (которая никуда и не пропадала).

Заметьте, что, когда речь заходит о потенциальной энергии, чаще всего мы говорим о падении чего-нибудь куда-нибудь. Даже рассчитывается потенциальная энергия по простой формуле:

Тут тоже есть масса m, ускорение свободного падения g и высота, с которой будет падать тело h.

Если же речь идёт про сжатую пружину, то схема расчёта слегка иная.

Здесь есть деформация пружины x и жесткость пружины k.

Хотя формула и похожа на расчет кинетической энергии, но тут мы имеем абсолютно другой физический смысл. Экспериментальные исследования позволили выяснить, что энергии будет вот столько, но факт того, что величины считаются похожим образом ни о чем не говорит. В одном случае происходит движение со скоростью, а в другом случае есть внутренние взаимодействия в теле, которые вызывают явление упругости.

Кстати говоря, сжатая пружина как нельзя лучше подходит для демонстрации явления потенциальной энергии. Глядя на неё не сложно понять всю суть рассматриваемой проблемы. Мы сжали пружину и пока она находится в таком состоянии, внутренние силы стараются её распрямить. Стоит её отпустить, и пружина отлетит в лоб. Вспомним шутку из Симпсонов, когда Гомер открыл банку от чипсов и оттуда в глаз ему вылетела пружина, с которой он потом бегал по городу. Это и была потенциальная энергия, превратившаяся в кинетическую.

Рис. 16. Сжатая пружина может отлететь в глаз

Всегда, когда речь заходит о кинетической энергии, мы имеем дело с движением. Не случайно кинетическая энергия рассчитывается по формуле:

В расчёте участвует скорость, которая обозначена тут буквой V. Само собой, масса (m) тоже будет присутствовать в этом расчёте. Ведь чем массивнее тело, тем сильнее оно может ударить или, говоря научным языком, тем большее количество энергии оно может запасти при движении с некоторой скоростью.

Ну и анализируя теперь пример с рукой и столом, который был в самом начале обсуждения, мы можем провести более глубокий анализ процесса.

Пока рука приближалась к столу, присутствовала кинетическая энергия, которая в итоге была передана столу и вызвала его незначительную деформацию. Несколько миллисекунд, пока стол не вернулся к своей исходной форме, он обладал потенциальной энергией. Сразу произошло несколько интересных процессов — один вид энергии превратился в другой вид энергии, а ещё сработал закон сохранения энергии.

Пример, вероятно, не самый полный и может показаться, что мы попросту забыли о некоторых моментах. Скажем, мы не учли, что деформируется и сама рука. Но в физике принято исключать малозначимые факторы и процессы или пренебрегать ими.

Строится принципиальная схема, а некоторые объекты вполне можно принимать за материальные точки, недеформируемые тела и делать прочие упрощения. Таких допущений огромное количество. Они есть в каждом учебнике при разборе ситуаций. Ведь не внеси мы такое упрощение и самая простая задачка про брусок и наклонную плоскость будет решаться этак на 100 страницах!
<< 1 2 3 4 5 6 7 >>
На страницу:
3 из 7