Оценить:
 Рейтинг: 0

Властелин механики. 7 великих законов в понятном изложении

<< 1 2 3 4 5 6 7 >>
На страницу:
4 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля

В случае с рукой мы исключили множество моментов – стол нагрелся от удара, рука тоже деформировалось, насколько бы это не было сложным для беглого восприятия, но у движущегося тела присутствовала и потенциальная энергия и многие другие. Мы всё это упрощаем для того, чтобы сосредоточиться на основном явлении.

Но! Это не означает, что все остальные факторы пропали вовсе! Они есть. Мы понимаем, что их влияние минимальное и отбрасываем их. Если же считать «по уму», то следует проводить сложнейшие интегральные вычисления и схемку рисовать покруче. Подобные вычисления потребуются, разве что, при проектировке самолета.

Формулируем закон сохранения механической энергии

Из этих нехитрых примеров следует, что при механических воздействия энергия может неограниченное количество раз превращаться из одного вида в другой. Потенциальная энергия переходит в кинетическую, а кинетическая переходит в потенциальную.

Рис.17. Превращение энергии при падении гири на пружинный пол

Когда речь идёт о механической энергиивсегда рассматривается сумма механической и потенциальной энергий. Это будет так называемая полная энергия системы.

Рассуждения о превращении энергии подталкивают к мысли, что на самом-то деле энергия не появляется и не пропадает. Она просто превращается из одной формы энергии в другую с потерями на другие процессы. И мы пришли к закону сохранения механической энергии.

Закон сохранения энергии гласит, что энергия ниоткуда не возникает и никуда не пропадает. Энергия лишь переходит из одного вида в другой или от одного тела к другому.

Как вы заметили, слово «механической» тут отсутствует. Закон справедлив не только для механики. Как и понятие «энергия» закон сохранения значим для всей физики сразу вне зависимости от раздела. Он работает во всей вселенной.

Но применительно к механике закон сохранения энергии учитывает преимущественно кинетическую энергию тела, потенциальную энергию тела и иногда ещё внутреннюю энергию тела (если происходит передача энергии движения в нагрев и т.п.), о которых мы поговорили чуть выше.

Теперь посмотрим, как сформулирован закон сохранения механической энергии в учебниках:

В замкнутой и консервативной системе тел полная механическая энергия сохраняется: ?Е = 0

или Е потенциальная 1 + Е кинетическая 1 = Е потенциальная 2 + Е кинетическая 2

или как вы это привыкли видеть:

Почему замкнутой? Потому что если система не замкнутая, то она будет обмениваться энергией с другими участниками процесса, и энергия в итоге рассеивается. Тот самый пример со столом подходит как нельзя лучше.

Рис.18. Человек, закрытый в ящике – это замкнутая система

Скажем, запустили мы всем известные шарики для демонстрации закона сохранения импульса. Они качаются и передают друг другу энергию в одной замкнутой системе.

Рис.19. Постоянная передача энергии с её превращением в замкнутой системе

Замкнутая система тут – это рама с нитями и сами шарики. Будь система не замкнутая, шарики должны были бы бить, скажем, ещё и по внешней стенке и отдавать ей часть своей энергии. Практически любую систему условно можно воспринимать, как замкнутую. Этот принцип активно используется при решении задач. Ключевое слово тут условно. Потому что копни поглубже и увидишь, что ни одна замкнутая система не будет замкнутой.

Почему консервативная и что это значит? Потому что если на систему воздействуют внешние силы, то они внесут свой вклад в процесс и уравнение, где общее изменение энергии равно нулю уже будет несправедливым. Консервативная система есть та, где существуют только консервативные силы.

Сила называется консервативной если ее работа не зависит от траектории, а определяется только начальным и конечным положениями тела.

Можно сказать и по-другому. Все действующие на систему внешние и внутренние непотенциальные силы не должны совершать работы, а все потенциальные силы должны быть стационарны. Это и будет консервативная система.

Проще было бы сказать что-то из серии – система варится в своем соку и ни с чем не взаимодействует. Логика бы сохранилась, а формулировка упростилась.

Рис.20. Жук внутри консервативной системы

Следовательно, если рассматривать систему, где происходит механическое движение и подул ветер, который заставил тело получить внешнюю энергию, она уже не консервативная. Модель движения автомобиля по дороге далеко не консервативная.

Правда тут возникает один интересный вопрос… Часто обозначенные выше обстоятельства воспринимаются как те, которые мешают работать закону сохранения энергии. Это не совсем так.

Закон сохранения энергии работает всегда. Вне зависимости от того, консервативная ли у нас система и замкнутая ли она. Только вот записать тогда его в форме, привычной нам из школьного курса, уже не получится. Реальная картина будет намного сложнее. Приведенная формулировка закона сохранения механической энергии используется для упрощения ситуации.

Так, простой пример с падением срезанной с веревки гири на пол можно значительно усложнить. Гиря висела на веревке, обладала потенциальной энергией. Веревку отрезали. Потенциальная энергия должна была полностью передаться падающей гири и превратиться в кинетическую, но мы не учли, что была ещё веревка, которая тоже получила часть этой энергии. Пока гиря падала, она воздействовала на воздух и испытывала трение о воздух. Нагрелись воздух и гиря. При падении она частично сломала пол, на который, растратив на разрушение часть энергии ну и частично перешла во внутреннюю энергию.

И пусть всё это значения с приставкой микро-, но реальная картина должна учитывать каждую мелочь. Прыгающий мяч в реальности рано или поздно остановится. Всё из-за постоянных взаимодействий.

Отсюда было логично предложено упрощать подобные взаимодействия и рассматривать гипотетические консервативные и замкнутые системы.

Ну а закон сохранения при таком рассмотрении сводится к простому примеру: висела люстра и обладала потенциальной энергией. Кинетическая энергия этой люстры была равна нулю. Потом веревочку обрезали, и кинетическая энергия появилась из-за превращения потенциальной энергии люстры в кинетическую. Если записать это в виде того самого выражения, что было приведено выше, где Еп1+Ек1=Еп2+Ек2 получим что-то вида 200 Дж +0 Дж = 0 Дж +200 Дж. Кинетическая и потенциальная энергия поменялись местами.

Для решения большей части практических задач достаточно такого понимания процесса и таких знаний.

В чем измеряется энергия

Мы обсудили закон сохранения энергии и даже привели примеры, но так и не упомянули, какая у энергии единица измерения.

Поскольку энергия у нас является мерой совершения телом работы, то и измеряется она в тех же величинах, что и работа. Единицей измерения энергии в системе СИ принят Джоуль.

Но есть и другие системы измерения. Например, в системе СГС энергия измеряется в эргах. Это довольно редкая единица и скорее всего, она вам никогда и не встретится. Но знать про это полезно. Собственно, 1 эрг = 1 дин х 1 см или та же самая сила, умноженная на расстояние, или работа по-нашенски.

Вы наверняка не в курсе, что система СГС – это система единиц измерения, в которой основными единицами являются единица длины сантиметр, единица массы грамм и единица времени секунда.

Ещё в технических расчетах встречается такая единица измерения энергии как килограммометр (кгм) или килограмм силы (кгс) на метр (м): (кгсм). При этом считают, что 1кгсм=1 кгс?1 м=9,81 Дж.

Есть и другие варианты единицы измерения энергии, но к механике они отношения не имеют. Например, существуют калории, кВт*ч или электрон-вольты. Единица измерения никак не влияет на факт существования физического понятия или процесса и нужна только для некоторой систематизации.

Почему невозможно создать вечный двигатель

Исходя из закона сохранения механической энергии складывается ложное впечатление, что возможно создать вечный двигатель. Ведь для работы такого агрегата будет достаточным просто играться с превращениями энергии. Это вполне не сложно и может быть реализовано с помощью современных технологий.

Рис.21. Модель вечного двигателя

Скажем, скатилось какое-то тело с наклонной плоскости и, обладая инерцией, оно может заехать на другую наклонную плоскость и на ту же самую высоту. Ведь мы выяснили, что энергия передается в полном объеме исходя из закона сохранения энергии.

Делая такие правильные с точки зрения здравого смысла предположения, мы не учитываем все сложности взаимодействий, с которыми приходится столкнуться в реальности. Закон сохранения энергии тут нам вряд ли поможет. Он скорее опишет лишний раз, почему вечный двигатель создать невозможно, а перпетум мобиле останется и дальше уделом фантастов.

Несмотря на то, что энергия неограниченно превращается и передается, нам гарантированы сопутствующие потери. Потери на самые разные вещи. Энергия рассеивается, также как рассеиваются силы у человека в течение рабочего дня. Вот поехали мы на работу и пока ехали уже устали. Виновато метро или любая другая форма транспорта.

Такая же ситуация и с сохранением энергии. Представим даже тот самый пример с наклонной плоскостью. Объект съедет по наклонной плоскости, но на такую же высоту у новой наклонной плоскости уже не заедет. Ведь будут потери на трение. И это как минимум. На самом деле потерь будет гораздо больше и их аналитика займет немалое количество времени.

Вы можете сказать – ну замените тело колесом, вот оно и будет скатываться без потерь. Ведь экстремалы в параболической рампе вполне себе неплохо справляются с обозначенными задачами и кажется, что скатываясь туда-обратно, они делают это только лишь по инерции. Это совсем не так. Опять беглый взгляд на проблему. Там тоже есть потери. Как минимум, на сопротивление воздуху. Кстати, если повторить опыт в вакууме, всё равно вечного двигателя не получится. Энергия будет рассеиваться на тепловую энергию, которая появится во втулках велосипеда или скейтборда, крутящегося в этой рампе.

Выходит, что закон сохранения энергии в правильном его изложении никоим образом не приближает нас разработке вечного двигателя. Он, наоборот, рассказывает, почему такой двигатель мы никогда не сделаем. В данном случае мы расписали самые простенькие примеры, но вне зависимости от конструкции и принципа работы агрегата главный физический принцип обмануть имеющимися методиками не получится.

Самое важное про закон сохранения энергии

Мы не случайно рассмотрели закон сохранения механической энергии самым первым. Для властелина механики он один из главных законов. Ведь без энергии не будет и работы. Чем тогда властвовать и кому нужна механика без движения. Да и обманщиков хватает. Скажем, вечные двигатели многократно пытались представить как реальные установки, используя в качестве движущей силы механизмы с хомяком в колесе или карликом, который едет на велосипеде внутри бочки. Всё это быстро становится понятным, если знать основы физической теории.
<< 1 2 3 4 5 6 7 >>
На страницу:
4 из 7