Оценить:
 Рейтинг: 0

Новые методы терапии сахарного диабета 1 типа. Радиогенетика, эпигенетика

Жанр
Год написания книги
2019
<< 1 2 3 4 5 6
На страницу:
6 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Выяснилось также, что при прохождении поляризованного света через некоторые вещества плоскость поляризации поворачивается. Впервые это явление обнаружил в 1811 году Франсуа Доминик Араго у кристаллов кварца. Природные кристаллы кварца имеют неправильное, асимметричное строение, причем они бывают двух типов, которые отличаются по своей форме, как предмет от своего зеркального изображения. Эти кристаллы вращают плоскость поляризации света в противоположных направлениях. Их назвали право- и левовращающими. В 1815 году Жан-Батист Био и Томас Зеебек выяснили, что некоторые органические вещества (например, сахар или скипидар) также обладают способностью вращать плоскость поляризации, причем не только в кристаллическом, но и в жидком, растворенном и даже газообразном состоянии. Так было доказано, что оптическая активность может быть связана не только с асимметрией кристаллов, но и с каким-то неизвестным свойством самих молекул. Как и в случае кристаллов, некоторые химические соединения могли существовать в виде право- и левовращающих разновидностей, причем самый тщательный химический анализ не мог обнаружить между ними никаких различий. Такие разновидности назвали оптическими изомерами, а сами соединения – оптически активными. Оказалось, что у оптически активных веществ есть и третий тип изомеров – оптически неактивные. Это обнаружил в 1830 году немецкий химик Йёнс Якоб Берцелиус.

Свойства хиральности изучались Луи Пастером, исследовавшим различные соли водорастворимых соединений с помощью рассеяния поляризованного света. Оптическую активность кристаллов физики связывали с их асимметричностью. Полностью симметричные кристаллы, например кубические кристаллы поваренной соли, оптически неактивны. Причина же оптической активности молекул долгое время оставалась загадочной. Первое открытие, пролившее свет на это явление, сделал в 1848 году Луи Пастер. Сам термин сформулирован в 1884 году Уильямом Томсоном.

Исследования природной диссимметрии и источника ее происхождения проводятся с помощью поляриметров, представляющих собой сложные устройства, которые позволяют с высокой точностью определить величину угла вращения плоскости поляризации (рис. 4).

Устройство поляриметра (рис. 5): 1 – источник света, 2 – неполяризованный свет, 3 – поляризатор, 4 – поляризованный свет, 5 – кювета с раствором вещества, 6 – оптическое вращение, 7 – анализатор, 8 – наблюдатель.

При прохождении плоско поляризованного света через некоторые вещества происходит постепенный поворот плоскости колебаний световой волны. Это явление получило название оптической активности, а сами вещества стали называть оптически активными.

В основе правой и левой оптической активности вещества лежат два природных явления: особое пространственное размещение атомов в молекулах, которое и определяет наличие в веществе двух видов стереоизомеров: правого и левого. Благодаря аналогии с правой и левой рукой данное явление получило название хиральность (от греч. ???? – рука) – это геометрическое свойство жесткого объекта (пространственной структуры) не совпадать со своим зеркальным отражением (рис. 6).

Наличие в одном веществе двух видов стереоизомеров в неравных количествах – это и есть диссимметрия. Преобладание той или другой разновидности молекул определяет наличие левой или правой оптической активности у всего вещества.

Ряд веществ проявляет оптическую активность в любом агрегатном состоянии – твердом, жидком и газообразном. Обнаружено, что эти вещества состоят из молекул, не имеющих ни центра симметрии, ни плоскостей симметрии, ни зеркально-поворотных осей. Особенно это характерно для органических молекул, содержащих атом углерода, связанный с четырьмя разными заместителями. Типичным представителем этого класса веществ является молочная кислота, молекула которой C3Н6O3 не имеет ни одного элемента симметрии (рис. 7).

Предельно сложные формы дихотомии реализуются в иерархии живых систем. К ним можно отнести симбиоз мужских и женских организмов, синергизм правого и левого полушарий мозга человека.

Есть весьма распространенное заблуждение, что все природные аминокислоты относятся якобы исключительно к L-ряду. На самом деле это не так: D-аминокислоты тоже встречаются в природе, хотя и реже, чем аминокислоты L-ряда, в основном в мире низших организмов. Они присутствуют, например, в пептидных антибиотиках, в оболочке некоторых бактерий. Некоторые термофильные микроорганизмы, живущие в горячих источниках и термальных водах, используют высокие концентрации D-аланина в качестве осморегулятора. Плазма крови высших организмов также содержит D-аминокислоты. В организме человека вырабатывается в качестве нейромедиатора D-серин. В нервных клетках высших организмов находят D-аланин, D-аспарагин и D-серин.

Человек – существо хиральное. Энантиомерные лекарства, взаимодействуя с хиральными молекулами в организме, например с ферментами, могут действовать по-разному. «Правильное» лекарство подходит к своему рецептору, как ключ к замку, и запускает желаемую биохимическую реакцию. Антиаритмическое средство S-анаприлин действует в сто раз сильнее, чем R-форма. У антигельминтного препарата левамизола активен в основном S-изомер, тогда как его R-антипод вызывает тошноту, поэтому в свое время рацемический левамизол был заменен одним из энантиомеров. Химики часто относятся к энантиомерам как к одному соединению, поскольку их химические свойства идентичны. Однако их биологическая активность может быть совершенно различной. Это стало очевидным после трагической истории с талидомидом – лекарственным средством, которое широко применялось в 60-е годы XX века в Европе беременными женщинами как эффективное снотворное и успокаивающее. Со временем проявилось его тератогенное действие, и на свет появилось много младенцев с врожденными уродствами. После этого европейцы заимствовали более строгую американскую систему сертификации лекарств – в Америке талидомид не был допущен к продаже. Но лишь в конце 80-х годов выяснилось, что причиной несчастий стал только один из энантиомеров талидомида. О таком различии в действии лекарственных форм раньше не знали, и продаваемый талидомид был рацемической смесью.

Энантиомеры относятся друг к другу как предмет и несовместимое с ним его зеркальное отражение. Энантиомеры, называемые также оптическими изомерами или стереоизомерами, в химических реакциях ведут себя одинаково, но различаются по весьма характерному физическому свойству, а именно по способности вращать плоскость плоскополяризованного света. Угол вращения плоскости поляризации для обоих изомеров одинаков, но направление вращения противоположно. Если один изомер вращает плоскость поляризации вправо, то второй вращает ее на такой же угол влево (при равной толщине слоя и одинаковой концентрации исследуемого вещества).

В настоящее время многие лекарственные средства выпускаются в виде оптически чистых соединений. Их получают тремя методами: разделением рацемических смесей, модификацией природных оптически активных соединений (к ним относятся углеводы, аминокислоты, терпены, молочная и винная кислоты и др.) и прямым синтезом. Последний также требует хиральных источников, поскольку любые другие традиционные методы синтеза дают рацемат. Это одна из причин высокой стоимости некоторых лекарств, и не удивительно, что из множества синтетических хиральных препаратов, выпускаемых во всем мире, лишь небольшую часть составляют оптически чистые, остальные – рацематы.


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 2 3 4 5 6
На страницу:
6 из 6