Рис. Генерируем исходные данные
Вам нужно будет построить диаграмму разброса, потом добавить линию регрессии под названием «линия тренда». Затем нажать пару кнопочек, чтобы на экране появилось уравнение связи.
Интерпретация
Теперь по поводу полученного уравнения. Мы берем эту формулу и переводим ее на русский язык – выражаем её смысл словами. Чтобы узнать свой «идеальный» вес, возьмите рост и сделайте с ним то-то и то-то. Нужно умножить рост на что-то, а потом отнять что-то.
Это особое действие, которое выполняют в эконометрике. Это попытка перевести найденную закономерность на обычный разговорный язык. Называется он ИНТЕРПРЕТАЦИЯ уравнения регрессии. Слово «интерпретация» буквально означает «перевод с одного языка на другой». Здесь мы переводим с математического языка формул на человеческий, разговорный язык.
Предмет эконометрики
Наш предмет эконометрики находится на стыке нескольких дисциплин, нескольких областей деятельности. Можно обнаружить раздел «Эконометрика» в некоторых учебниках по экономической теории – обычно в самом конце. Кроме того, мы обнаруживаем очень похожий материал в курсе статистики. В математике тоже рассматриваются похожие задачи. Фактически, эконометрика находится на стыке трёх областей деятельности, трёх областей знания. На рисунке мы приводим такую схему:
– экономика;
– математика;
– статистика.
Рис. Место предмета эконометрики
На схеме мы показали другие пограничные области, которые находятся на стыке дисциплин.
Между экономикой и математикой находится математическая экономика – там изучаются математические модели экономических систем и явлений. Но они изучаются по большей части с точки зрения теории: как, в принципе, должна зависеть цена от спроса.
На стыке экономики и статистики находится так называемая экономическая статистика. Можно найти учебники, которые так и называются. Здесь обсуждается применение статистики для решения самых разных экономических задач.
Есть предмет статистики, который иногда называют «Общая теория статистики». Его тоже можно отдельно изучать.
Наконец, на границе между математикой и статистикой есть математическая статистика. Там будет много формул, много интегралов —очень тяжелый материал для тех, кто сдавал ЕГЭ.
Мы будем разбирать материал попроще и попонятней, потому что наша аудитория – специалисты по информатике. Такие работники используют готовые инструменты. Они внедряют готовые информационные системы (ИС) или, в лучшем случае, их настраивают.
Не все «информатики» занимаются разработкой и написанием программ. Чаще всего, речь идет о настройке, установки, обслуживании, сопровождении ИС. Это целая профессия.
В плане эконометрики у нас тоже есть готовые инструменты и требуется грамотно ими пользоваться. А если не нужно писать свою программу, которая будет строить линию по точкам, то работа с интегралами нам не особо потребуется. Но нам потребуется научиться грамотно нажимать некоторые кнопки и получать правильные графики. И, конечно, объяснять смысл полученных закономерностей.
Рис. Предмет эконометрики
Слово «эконометрика» состоит из нескольких частей, см. рис.
Первая часть «эконо-» намекает на экономику. Напомним, что экономика – это производство, обмен и потребление товаров и услуг. Конечно, есть и наука, которая изучает эту сторону нашей жизни. Это самое простое определение, которое можно обнаружить в любом словаре или энциклопедии. Это наша жизнь. Всё, что мы делаем. 90 процентов нашей жизни связано или с производством, или с потреблением чего-нибудь, или с посещением мест, где это можно купить или продать. даже если мы лежим на диване и смотрим телевизор, мы что-то потребляем – товар (диван) и услугу (телевизионную передачу, «контент»). Есть и другие ситуации, где не так много экономики, а просто общественные отношения.
Вторая часть – «метр» – в данном случае означает «измерить, выразить числами, количественно». Это модели с какими-то числовыми коэффициентами. Модели, в которых есть конкретные числа. Модели строятся по реальным данным.
Эти модели нужны для того, чтобы выяснить, какие взаимосвязи существуют и почему происходит то или иное событие. Почему люди посещают магазин в определённое время? Почему люди переходят из одной сотовой компании в другую? В какой момент клиенты собираются «сбежать»? Это описание и анализ текущей ситуации.
Кроме анализа, существует задача прогнозирования. Что будет дальше, если верить существующим данным? Какие прогнозы по развитию ситуации? Исходя из прогнозов, можно давать рекомендации. Вот эти клиенты собираются перейти к другому оператору. Чтобы их удержать, обычно помогает вот такой приём, такое особое предложение – для такой категории клиентов.
Другой пример. Обычно в такое-то время такая категория покупателей приобретает такой набор товаров. Эти товары часто находятся в одном чеке. Поэтому давайте эти вроде бы разные товары на соседних полочках поставим.
Есть много задач, где обработка больших массивов данных помогает что-то обнаружить и что-то улучшить, причём с небольшими затратами.
В отличие от экономической теории, здесь рассматриваются конкретные данные, числа, факты. В экономической теории описывают общие закономерности, а здесь мы смотрим на реальные события, причём в большом количестве. Всё это нужно для того, чтобы чем-то управлять, чтобы что-то улучшать и корректировать. Эта деятельность называется управление, или принятие решений.
Окончание слова «-ика» означает «наука или дисциплина, изучение чего-либо».
Эконометрика занимается построением моделей. Мы рассмотрели пример такой модели в виде уравнения, но в среднем.
Есть большое количество книг с названием эконометрика. Каждый год появляются новые книги. Есть они на русском языке, есть и на других языках. На английском языке издаются в огромном количестве. Каждый университет с большим удовольствием издаёт свой вариант этого материала.
Задание
Предлагаем выполнить одно несложное задание, чтобы сориентироваться в общей картине. Посмотрите, какие существуют на сегодняшний день онлайн-курсы – платные и бесплатные – на тему «Эконометрика», «Большие данные», «Наука о данных», «Data Science», «Программирование на языке Python».
Есть платформы для массовых открытых онлайн-курсов – МООК. Английское название: Massive Open Online Courses (MOOC). Есть и отдельные компании, которые на чём-то специализируются.
Посмотрите сколько предлагается таких курсов и сколько они стоят.
2. Инструменты
Мы переходим к следующей теме. Это инструменты анализа данных, см. рис.
Рис. Инструменты анализа данных
Следует отметить несколько вариантов.
Первый способ обработки данных – простой наглядный и не всегда удобный. Это электронные таблицы. Они существуют в самых разных видах, но мы будем, в основном, ориентироваться на Excel.
Существуют разные системы, языки программирования или среды того или иного уровня для обработки данных. Очень часто используются Python или язык R. Есть более специализированные инструменты, например Matlab, но это уже коммерческий, дорогой продукт.
Естественно, есть обычные языки программирования для работы с данными. Мы увидим, что в системах типа Python несколько удобней работать с данными.
Следующий момент – это варианты реализации программы, с которой мы работаем.
Чаще всего и привычней настольные, локальные варианты – Desktop Version.
При этом становится доступным всё больше облачных вариантов, когда мы можем работать через браузер. Здесь не всегда доступен полный функционал.
Наконец, есть варианты для мобильных устройств. Но чаще всего мобильные устройства – смартфоны и планшеты – не такие удобные, если требуется много печатать. Нужно подключать внешнюю клавиатуру. Кроме того, мобильные варианты приложений чаще всего ограничены по своим возможностям. Они подходят для определенных целей, например, чтобы посмотреть готовый график / отчёт или отсканировать QR-код.
Для дальнейшей работы нам понадобится так называемая надстройка «Анализ данных». Чтобы включить настройку, нужно перейти в меню Файл Настройки – Надстройки: File – Options – Add-ins – Excel Add-ins – Go – Analysis ToolPak, см. рис.
Рис. Включение надстройки
Теперь в верхнем меню появится надстройка – в разделе «Данные» – кнопка «Анализ данных», см. рис.
Рис. Вызов надстройки