Таким образом, мы узнали центральную догму молекулярной биологии. Она гласит: информация в живых организмах передается по цепи ДНК – РНК – белок. В настоящее время доказано явление обратной транскрипции, когда передача информации происходит от РНК к ДНК. В то же время совершенно невозможен перенос информации от белков обратно к нуклеиновым кислотам.
В соответствии с существующими представлениями синтез белка всегда начинается с работы генов. Работа генов – это способность транскрибировать, то есть направлять синтез и-РНК. Но не всегда работа гена заканчивается сборкой белковой молекулы. Как заметил один американский генетик, для того, чтобы выдать белок, гену нужно пробиться сквозь «клеточные джунгли». Выход конечного белкового продукта – это экспрессия гена. Она совершается в результате деятельности всей клетки с ее многокомпонентными механизмами белкового синтеза.
Энергетический обмен
Энергетическим обменом или диссимиляцией называются процессы ферментативного расщепления органических веществ и образование соединений богатых энергией. Энергетический обмен подразделяется на три этапа.
Первый этап, подготовительный, связан с пищеварением. Он происходит вне клетки. Крупные молекулы биополимеров распадаются на мономеры: белки – на аминокислоты, полисахариды – на простые сахара, жиры – на жирные кислоты и глицерин. При разрыве химических связей выделяется небольшое количество энергии, рассеянной в виде тепла. Мономеры поступают в кровь.
Второй этап – гликолиз, бескислородное расщепление глюкозы. Происходит внутриклеточно в цитоплазме, куда глюкоза поступает из крови. Включает ряд последовательных ферментативных реакций, в результате которых глюкоза распадается на две молекулы пировиноградной кислоты. Реакции протекают с участием фосфорной кислоты, образованием 2 молекул АТФ.
В процессе гликолиза выделяется 200 кДж энергии, из которых только 80 кДж (40%) аккумулируется в АТФ, остальные 120 кДж рассеиваются в виде тепла.
Гликолиз происходит во всех животных клетках, но является мало эффективным с энергетических позиций. Поэтому основные процессы накопления энергии совершаются на третьем этапе.
Третий этап – кислородный (аэробный – клеточное дыхание). Его называют окислительным фосфорилированием. Наблюдается полное кислородное расщепление органических веществ до двуокиси углерода СО
. Происходит освобождение атомов водорода Н (водород выделяется из углеводов в результате прохождения ими сложного ряда химических превращений, называемых циклом Кребса). Реакция протекает с участием АДФ и Н
Р0
. При этом выделяется большое количество энергии, достаточное для синтеза 36 молекул АТФ.
Окислительное фосфорилирование совершается в митохондриях клеток Атомы водорода Н (электроны и протоны) переносятся на систему ферментов в митохондриальной мембране. Здесь они окисляются, то есть теряют электроны:
Н
– 2е
2Н
. Образуются свободные электроны е
и ионы водорода Н
(протоны). В ходе дыхания электроны несколько раз пересекают мембрану митохондрий, вынося протоны Н
на наружную поверхность. Количество положительно заряженных протонов там резко возрастает. Возникает градиент концентрации протонов и электрический потенциал. При напряжении 200 мВ в ферменте АТФ-синтетазе, встроенном в мембрану крист, открывается протонный канал. Через него протоны Н
возвращаются на исходную позицию, где взаимодействуют с 0
, образуя воду (2Н
+02 = Н
0). В момент прохождения протонов по каналу фермента электрическое поле разряжается, а энергия аккумулируется в реакции синтеза АТФ.
Итоговое уравнение внутриклеточного расщепления глюкозы:
Анаэробный этап:
Аэробный этап
Суммарное уравнение гликолиза:
38АДФ +38Н
Р0
+1520 кДж = 38 АТФ +38Н
0
Таким образом, в ходе энергетического обмена из одной молекулы глюкозы образуется 38 молекул АТФ.
Блок-схема энергетического обмена
Теория гена
Теория – это система обобщающих положений в той или иной области знаний. Теория неразрывно связана с практикой, которая ставит задачи и побуждает к их решению. Наука генетика наиболее выразительно иллюстрирует эту взаимосвязь. Успехи современной молекулярной биологии существенно углубили и детализировали теоретическую базу генетики, обосновали молекулярно-генетический уровень жизни.
Структура гена
Грегор Мендель, разрабатывая основопологающие законы наследования (1856—1863 гг.), использовал понятие «наследственные зачатки», применяя для них буквенные обозначения. Термин «ген» (от греч. genos – происхождение) ввел датский генетик В. Йогансен (1909 г.). Ген – структурная и функциональная единица наследственности.
В современном понимании ген —это участок молекулы ДНК (у некоторых вирусов – РНК) со строго определенной последовательностью нуклеотидов, контролирующей синтез белка (белков-ферментов).
Детальный анализ генной активности позволил выделить следующие группы генов:
1) аллельные и неаллельные;
2) доминантные и рецессивные;
3) эпистатические и гипостатические;
4) структурные и регуляторные.
В целом, понятие «ген» ассоциируется с созидательными процессами, однако есть и гены деструктивные по своей природе: онкогены, гены-мутаторы, летальные и сублетальные гены. Генам свойственно объединиться в группы, полигены. Функционально близкие группы генов формируют кластеры, отвечающие за важнейшие функции организма (размножение, пищеварение и т.д.).
На молекулярном уровне гены образованы нуклеосомами и связывающми их фрагментами молекулы ДНК. Нуклеосома состоит из протеинового дискообразного остова, включающего 8 молекул (глобул) белков-гистонов: по 2 молекулы H2A, H2B, H3, H4. На него насажен виток молекулы ДНК, включающей 150 пар нуклеотидов. Нить ДНК непрерывно и последовательно связывает нуклеосомы, при этом межнуклеосомные участки называются линкерными и каждый из них содержит до 60 пар азотистых оснований. Полная нуклеосома включает собственно нуклеосому и примыкающий к ней линкерный участок, насчитывая таким образом, около 200 пар нуклеотидов.
При спирализации ДНК свободные пространства заполняет белок Н1 (рис. 21).
Рис. 21. Компоненты нуклеосом
Ген средней величины объединят около 6 нуклеосом. Методами секвенирования было установлено, что организм человека содержит 25—40 тысяч активно работающих генов. В последнее время специалисты по биоинформатике уточняют количество генов до 2025 тысяч из-за их повторения в геноме. Следует учитывать высокую динамичность всей генной системы, и эти цифры, очевидно, будут меняться. Суть вопроса не в количестве генов, а в их сложности. Смысл эволюционных перестроек всей генной системы – это количество информации, включаемой в отдельный конкретный ген. Все гены функционируют как единое целое, формируя индивидуальный генотип особи и генотипическую среду, определяющую фенотипические проявления, т.е. признаки организма.
Генная регуляция синтеза белка. Система оперон