Оценить:
 Рейтинг: 4.5

О границах науки

Год написания книги
2017
1 2 >>
На страницу:
1 из 2
Настройки чтения
Размер шрифта
Высота строк
Поля
О границах науки
Владимир Николаевич Катасонов

В книге обсуждаются вопросы о границах научного знания. Наука рассматривается автором неотделимо от той научно-технологической цивилизации, в которой мы существуем последние четыре столетия. Поэтому критика науки неизбежно оказывается критикой цивилизации, и обсуждением вопроса о цивилизации альтернативной. Наша же цивилизация все более разоблачает свой искусственный, утопический характер, начиная разрушать саму антропологическую основу существования человека (трансгуманизм, биотехнологии и т. д.). Перед лицом постмодернистской и следующей за ней технологической «смерти человека» автор призывает к сознательным усилиям ради сохранения той христианской антропологии, которой европейское человечество жило две тысячи лет.

Владимир Николаевич Катасонов

О границах науки

© Катасонов В. Н., 2017

© Издательский дом «Познание», 2017

* * *

Предисловие автора

Предлагаемый сборник содержит статьи, касающиеся разных вопросов естествознания, но объединенные общим умонастроением, которое можно бы было выразить словами: науке не все доступно. Не непонятно, ибо это только внешние границы науки, которые постоянно расширяются, а именно недоступно, то есть наука не знает, как подступиться к этим вопросам. Для того чтобы подступиться к ним, науке нужно отказаться от собственного метода: от претензии на безличную объективность, принудительную доказательность, от сектантского игнорирования ряда важных аспектов общечеловеческого опыта, в том числе и религиозного. Отказ от этого означал бы самоубийство науки в той форме, в которой ее задумали Ф. Бэкон, Р. Декарт и другие отважные умы XVII столетия.

Актуальность подобной критики науки следует не только из того, что на всех этапах ее исторического бытия параллельно с ней всегда существовали и другие формы гнозиса. Кроме этого, есть еще и внутренние причины, обусловленные в том числе теснейшей связью новоевропейской науки с нашей цивилизацией, построенной на научных технологиях.

Бог создал человека по Своему образу и подобию, в частности, наделил его способностью творить. В новоевропейской цивилизации по сравнению с другими историческими эпохами человек беспрецедентно широко и глубоко раскрыл свои творческие способности. Он не просто подчиняет себе природу – на основе научных технологий он стремится создать новую, пытается улучшить существующую природу, он конкурирует с Самим Творцом этого мира. Что-то из этого необходимо, что-то удается, но безудержная погоня за комфортом все более оборачивается своей противоположностью: отравление природы, прогрессирующее уничтожение целых видов биологических организмов, задыхающиеся от отходов своей жизнедеятельности мегаполисы, глобальный экологический кризис…

Начиная с последней четверти XX века наука стремительно движется в новом направлении, развивая информационные и биотехнологии. На их основе человек надеется изменить свой собственный образ, тот антропологический тип, в рамках которого человек существовал от создания мира. Вместе с тем утопические посулы бесконечного познания, завоевания Вселенной и технологического бессмертия соблазняют далеко не всех. Раздаются и более осторожные голоса: не навреди, разрушить легко, но пути назад может и не быть… Везде мы видим одну и ту же проблему: уровень нравственного сознания человечества не соответствует открытым им энергиям и технологиям.

Все это требует серьезного и вдумчивого рассмотрения самих возможностей науки, ее природы, ее соотношения с другими формами гнозиса и связанными с ними формами человеческого бытия. В представленном сборнике читатель найдет посвященные этой теме статьи автора, напечатанные в различных периодических и непериодических изданиях за последний десяток лет.

Особую благодарность нужно выразить Ректору Общецерковной аспирантуры и докторантуры имени святых равноапостольных Кирилла и Мефодия Митрополиту Волоколамскому Илариону за поддержку издания этой книги и включения ее в библиотеку аспирантуры.

Автор высказывает свою глубокую благодарность всем, кто помог выходу в свет этой книги: иеромонаху Иоанну (Копейкину), иеромонаху Афанасию (Микрюкову), монаху Максиму, В. И. Демкову, Н. В. Апреликовой.

Предисловие рецензента

Книга Катасонова В. Н. «О границах науки» посвящена актуальной теме природы современной науки, выступающей в образе математического естествознания. Успехи последнего приводят к тому, что даже и многие гуманитарные науки с завистью поглядывают на физику, химию, биологию и т. д., стараются и внутри самих себя начать применять математические методы. Директива И. Канта, сказавшего, что в дисциплине столько науки, сколько в ней математики, как будто-бы оказывается безусловно верной. Но так кажется только поверхностному взгляду. В. Н. Катасонов показывает, что даже и в самом современном естествознании вопрос о «непостижимой эффективности математики», по существу, висит в воздухе (статья «Ахиллесова пята новоевропейской науки»). Да и внутри самой новоевропейской математики, оперирующей с понятиями актуально бесконечных множеств, не «все благополучно». Апории, связанные с актуальной бесконечностью, открытые еще в Античной науке, переоткрытые вновь внутри теории множеств на рубеже XIX – XX веков, не преодолены и по сегодняшний день. Теорема Геделя о неполноте дала нам новый взгляд на эти апории: человек в своей теоретической деятельности может задавать такие вопросы, на которые невозможно найти ответа в рамках традиционного логического дискурса (статья «Концепция актуальной бесконечности как «научная икона Божества»). В книге критически разбираются многие ставшие уже как-бы очевидными представления современной науки: понятие информации (статья «Информация и реальность»), методического исследования (статья «Методизм и прозрения»), технологий (статья «Цивилизационный кризис XX столетия и Православие (о границах технологического мышления)») и др., показывается условность этих понятий, обсуждаются границы их применений. Эти границы задаются теми философскими, метафизическими представлениями, без которых наука не может существовать. В отдельных статьях В. Н. Катасонов подробно разбирает проблему соотношения религиозных представлений и науки (например, статья «Наука и религия (возможности новой методологии исследования)»). Автор показывает, что наука существует не в культурном вакууме, а теснейшим образом связана с общими установками новоевропейской цивилизации. В книге обсуждаются также социологические аспекты научных технологий (например, статья «Наука и утопия»).

Актуальные вопросы философии науки рассматриваются В. Н. Катасоновым на обширном историко-философском и философско-богословском материале. Наследие Платона, Аристотеля, пифагорейцев, Галилея, Декарта, Лейбница, Бергсона рассматривается в книге наряду с идеями русской религиозной философии, московской философско-математической школы, аритмологи Н. В. Бугаева, П. А. Флоренского и других отечественных мыслителей. Обширный материал по истории и философии науки, интерпретированный автором, крайне полезен в качестве пособия для молодых ученых, сдающих ныне в качестве кандидатского экзамена вместо философии вновь введенную и небывалую ранее дисциплину под названием «история и философия науки».

Книга написана на высоком научном уровне. Автор профессионально обсуждает научные, философские и богословские темы. Нельзя не отметить таланта автора, умение объяснять сложные философские и научные понятия доступным и грамотным языком.

Книга будет полезна философам науки, преподавателям, ученым естествоиспытателям, богословам, аспирантам и студентам, – всем, кто интересуется природой современной науки, ее генезисом и ее судьбой.

    Заслуженный профессор Московского университета,
    М. А. Маслин, доктор философских наук

I. Физика, математика и метафизика нашей цивилизации

Цивилизацию нашу справедливо называют техногенной, основанной на технике, особом искусственном мире, созданном человеком за последние четыре столетия. Степень присутствия этого искусственного мира в нашей жизни настолько велика, что в нем почти не остается ничего естественного: способ передвижения, климат, питание, информация, отдых, обучение и т. д. – все опосредовано машиной, всевозможными техническими изобретениями. И вместе с тем все естественное получает в нашем мире все большую цену: его становится все меньше и меньше. И эта асфальтовая дорожка, и этот металлический забор, и эти кусты смородины, и эти розовые флоксы – все уже есть продукт технологической обработки, индустрии: добывающей, обрабатывающей, генетической… Разве что, подняв глаза к небу, человек может еще встретиться с самой природой в чистом виде… «Вторая (техногенная) природа», все более вытесняющая, но не заменяющая первую, порождает, как известно, серьезнейшие проблемы. Целую систему проблем: экологический кризис. Пытаясь разобраться в его истоках, мы начинаем анализировать современную науку, на основании которой и построены все эти технологии. И тут обнаруживается, что наука, которая, вообще говоря, призвана искать истину, то есть как минимум объективную суть вещей, оказывается в высшей степени небеспредпосылочным предприятием, связана с необходимым выбором множества нетривиальных положений и представлений, принятием оснований, которые должны быть справедливы, еще до того, как выяснено, что же, собственно, есть… Чтобы лишь начать о чем-то рассуждать, наука должна уже предположить массу нетривиальных вещей: язык, нормы рассуждения, общее представление о характере реальности, гносеологию и т. д. Эти общие сверхопытные утверждения о началах бытия и познания традиционно называются в философии метафизикой. Метафизическая подкладка современной науки уже давно известна. С самого возникновения этой науки обсуждение валидности тех или иных метафизических предпосылок и вообще роли метафизики в развитии науки было всегда в той или иной степени составной частью самого научного знания. В этой статье мы анализируем генезис и роль некоторых принципиальных для развития науки последних четырех столетий положений.

1. Математика и физика в Античности

Математический язык современной физики, ставший для нас чем-то само собой разумеющимся, отнюдь не всегда был естественным языком природоведения. Мы знаем, что учения о природе в Античности говорили на другом языке: на языке качеств, а не количеств. Причина была принципиальной: в античном космосе вся подлунная сфера состояла из четырех элементов: земли, воды, воздуха и огня. Эти же элементы не могут воспроизводить точные геометрические формы, поэтому измерения в этой области тщетны: физика подлунной сферы не может быть математической. В надлунной же области все состоит из эфира (пятого элемента). Эфир по своей природе уже может точно воплощать геометрические фигуры (например, небесные сферы), поэтому и возможна математическая астрономия. Подлунная сфера не может точно воспроизводить геометрические формы потому, что все сущее есть соединение формы и материи (Аристотель), и последняя есть то бесформенное начало, которое отрицает всякую точность в материальных вещах. Еще решительнее эта точка зрения выражена у Платона. Вещи материального мира суть лишь отражения мира идей. Материя в них только отчасти подчинена форме, и именно поэтому невозможна математическая физика[1 - Хотя парадоксом остается то, что именно Платон дал в «Тимее» одну из первых попыток построения математической физики.].

Однако попытки построения математической физики начались еще раньше, чем были построены космологии Аристотеля и Платона. Традиция приписывает пифагорейцам фундаментальный принцип «Все есть число». Хотя историки философии и по сегодняшний день спорят об истинном значении этого тезиса – значит ли он, что все есть число в онтологическом смысле, или же смысл его состоял в том, что все закономерности в природе могут быть выражены через число, в духе современной физики. Тем не менее сам факт этого внимания к роли математики в познании природы был отнюдь не случаен. Пифагорейцы создают математическую теорию музыки, на долгие века входящую в традиционный квадривиум наук. Они открыли, что благозвучие традиционных музыкальных интервалов – такое, казалось бы, субъективное и психологически неустойчивое – имеет под собой жесткую структуру числовых соотношений: октава (2:1), квинта (3:2), кварта (4:3).

Рассмотрение так называемых «фигурных чисел», например квадратов или треугольников, выложенных из камешков (точек), и обнаружение арифметических соотношений между последовательностями этих чисел наводило на мысль, что вероятно и геометрические фигуры также могут быть сведены к числам[2 - Например: (n + I)?– n? = 2n + 1 – «разность квадратных чисел равна нечетному числу».].

Но именно пифагорейцам традиция приписывает и открытие несоизмеримости отрезков – открытие, принципиально подорвавшее веру в то, что все в мире может быть измерено и выражено в целых числах. Оказалось, что если мы возьмем квадрат со стороной единица, то диагональ этого квадрата невыразима ни целым числом единиц, ни целой частью единицы. Надежды на рациональную «прозрачность» всего сущего рухнули: в мире вместе с соразмерностью и порядком существует и несоизмеримое, иррациональное. Это открытие было научно-философским выражением дуализма, давно опознанного традиционной народной религией: есть светлые божества, несущие в мир порядок и смысл (Аполлон), а есть другие, выражающие темную, стихийную природу сущего (Дионис)[3 - См. об этом интересную книгу: Доддс Е. Р. Греки и иррациональное. М., 2000. Особенно гл. 3 «Блага исступленности».]. Этот дуализм прочно вошел в традицию античной мысли и, несмотря на большие достижения античной математики и естествознания, всегда оказывал характерное влияние на развитие науки и философии.

С открытием несоизмеримости была связана еще одна принципиальная для истории науки тема бесконечности. Уже в классическом доказательстве несоизмеримости диагонали квадрата и его стороны обнаруживалось, что процесс нахождения общей меры[4 - Так называемый «алгоритм Евклида».] шел в бесконечность. Греки настороженно относились к бесконечности: весь человеческий опыт конечен, бесконечность невозможно представить, греческие боги и те конечны по своему могуществу. Более того, бесконечность немыслима, так как при этом нарушаются фундаментальные аксиомы науки. Одной из таких аксиом была следующая: часть меньше целого[5 - Например, в «Началах Евклида».]. Но для бесконечности эта аксиома нарушается. Если взять, например, натуральный ряд чисел, то между всеми числами и только четными числами можно установить взаимно-однозначное соответствие по формуле: n ? 2n. Четных чисел оказывается столько же, сколько и всех, часть равна целому. Поэтому греки отказались от использования бесконечности в науке. Точнее, они выделили понятия потенциальной бесконечности – бесконечности как процесса (возрастание чисел натурального ряда или неограниченное деление отрезка и его частей), и актуальной бесконечности (все натуральные числа, взятые как единое множество, или отрезок, разделенный «до конца»). Потенциальная бесконечность допускается в науке как метод, как прием. Актуальной же бесконечности отказано в праве существования в науке: «бесконечности нет ни в космосе, ни в уме» (Аристотель)[6 - Подробнее см. в моей книге: Катасонов В. Н. Боровшийся с бесконечным. Философско-религиозные аспекты генезиса теории множеств Г. Кантора. М., 1999.].

2. Математическая физика и метафизика

Итак, в лице главных своих мыслителей Античность определилась вполне недвусмысленно: физика не может быть математической в принципе; да и в самой математике господствует дуализм: геометрия, протяженность, континуум не могут быть сведены к числовым арифметическим конструкциям. Как же так получилось, что с XVII века возникает математическая физика, традиция которой непрерывно развивается вплоть до наших дней? Разве пионеры науки Нового времени не знали всех тщательно продуманных аргументов античных философов и ученых?.. Конечно, знали. К этому времени все основные труды греческих авторов уже переведены на латынь и активно изучаются в Западной Европе. Можно ли сказать, что создатели новой науки преодолели аргументацию античных авторов? Вряд ли… Скорее, ими была продолжена новая парадигма, новое направление развития науки, а точнее – новое понимание науки, которое определило и развитие нового типа цивилизации.

Однако вести полемику со старой системой мысли было неизбежно. Главную часть этой трудной работы взял на себя Галилео Галилей. Именно ему принадлежал лозунг: «Книга природы написана на языке математики»[7 - Точнее эта цитата звучит следующим образом: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту» (Галилео Галилей. Пробирных дел мастер. Пер. Ю. А. Данилова. М., 1987. С. 41).]. В его знаменитой книге «Диалог о двух главнейших системах мира Птолемеевой и Коперниковой» этот тезис – один из самых важных пунктов дискуссии. Противник галилеевской позиции Симпличио защищает традиционную для того времени аристотелевскую точку зрения: математические соображения хороши лишь в абстрактном пространстве[8 - По Аристотелю, математические положения получаются абстракцией от реальных вещей (лат. abstrahiere – уводить, отвлекать, удалять).], а в реальном материальном мире все обстоит по-другому. В частности, только в математике сфера касается плоскости в одной точке, в действительном же мире касание материальных сферы и плоскости в одной точке невозможно. Порт-пароль Галилея – Сальвиати – отвечает на это: «…Всякий раз, как вы конкретно прикладываете материальную сферу к материальной плоскости, вы прикладываете несовершенную сферу к несовершенной плоскости и говорите, что они соприкасаются не в одной единственной точке. А я вам говорю, что и в абстракции нематериальная сфера, которая является несовершенной сферой, может касаться нематериальной, также несовершенной плоскости, не одной точкой, а частью поверхности. Так что то, что происходит конкретно, имеет место и в абстракции. Было бы большой неожиданностью, если бы вычисления и действия, производимые абстрактно над числами, не соответствовали затем конкретно серебряным и золотым монетам и товарам. Но знаете ли, синьор Симпличио, что происходит на деле и как для выполнения подсчетов сахара, песка и полотна необходимо скинуть вес ящиков, обертки и иной тары; так и философ-геометр [то есть ученый новой математической физики. – В. К.], желая проверить конкретно результаты, полученные путем абстрактных доказательств, должен сбросить помеху материи, и если он сумеет это сделать, то, уверяю вас, все сойдется не менее точно, чем при арифметических подсчетах. Итак, ошибки заключаются не в абстрактном, не в конкретном, не в геометрии, не в физике, но в вычислителе, который не умеет правильно вычислять. Поэтому, если у вас есть совершенные сфера и плоскость, хотя бы и материальные, не сомневайтесь, что они соприкасаются в одной точке [курсив мой. – В. К.]. А если их невозможно получить, то все же утверждение, что sphaera aenea поп tangit in puncto[9 - Медная сфера не касается в одной точке (лат.).], весьма далеко от сути дела»[10 - Галилей Г. Диалог о двух главнейших системах мира Птоломеевой и Коперниковой. М.;Л.,1948.С. 161.]. Что же, разве доказал Галилей утверждение, выделенное курсивом? Нет. Его аргумент касается лишь неправильной сферы и плоскости и их касания в абстрактном геометрическом пространстве. А искомое утверждение так и остается недоказанным. Галилей этим рассуждением как бы «отвел нам глаза» от искомого, а как конкретно «сбросить помеху материи», так и не показал… Более того, этого и нельзя показать. Точная материальная сфера и точная материальная плоскость не могут касаться в одной точке по одной простой причине: касание в одной точке означает принадлежность этой точки одновременно и одному, и другому телу. А для материальных тел это невозможно в силу непроницаемости материи. Галилей в этом рассуждении, как и во многих других местах своей книги, заражает нас своей убежденностью, его диалектическая способность замечательна. Однако преодолеть античные аргументы против математической физики ему фактически не удается.

Другой подход к решению этого же вопроса демонстрирует Рене Декарт. Он хорошо понимает, что обосновать применение математики в физике исходя из традиционного аристотелевского (четыре элемента подлунной сферы) образа мира или даже просто из интуиции природы, как она дана нашими чувствами, не удается. Поэтому необходимо с самого начала сделать решительный шаг: изначально предложить новый образ реальности – новую метафизику. Посмотрим, как это делается в работе «Мир, или Трактат о свете». Вначале Декарт дает как бы подведение к своей новой метафизике. По его мнению, не четыре элемента есть основа всего в мире, а три: огонь, воздух, земля. Причем все эти элементы и их свойства сводятся к совокупности частиц разной величины и разной скорости движения. Четвертый элемент, вода, как показывается, также представляет собой лишь множество движущихся частиц: «Я полагаю также, что для образования самого жидкого тела, какое только можно найти, достаточно, чтобы все его мельчайшие частицы двигались по отношению друг к другу самым различным образом и с самой большой скоростью…»[11 - Мир, или Трактат о свете. С. 186. Декарт Р. Сочинения в 2 томах. Т. 1,М., 1989.] В этом смысле и огонь представляет собой такую жидкость и превращает в жидкость (расплавляет) другие тела. Три элемента уже на этом шаге сведены к некому единству, к множеству движущихся частиц. Хотя еще не понятно, что это за частицы.

Следующий шаг – собственно новая метафизика. «Отрешитесь на некоторое время от этого мира, чтобы взглянуть на новый, который я хочу на ваших глазах создать в воображаемых пространствах» – пишет Декарт[12 - Цит. соч. С. 196.]. «…Предположим, что Бог заново создает вокруг нас столько материи, что в какую бы сторону ни обратился наш мысленный взор, мы нигде не увидим пустого места»[13 - Цит. соч. С. 197.]. Эти воображаемые пространства у Декарта суть пространства геометрические, то есть в которых можно производить геометрические построения и измерения. Материя же, наполняющая это пространство, также особого свойства: «Раз мы уж взяли на себя смелость изменить материю по своей фантазии, наделим ее природой, совершенно ясной и понятной каждому: для этого предположим, что она не имеет никакой формы – ни формы земли, ни формы огня, ни формы воздуха, ни формы любого другого, более частной формы, например дерева, камня или металла. Предположим также, что эта материя не имеет ни качеств теплоты или холода, ни качеств сухости или влажности, ни качеств легкости или тяжести, что у нее нет ни вкуса, ни запаха, ни звука, ни цвета, ни света, ни какого-либо другого свойства, относительно природы которого можно было бы сказать, что в ней заключается нечто неизвестное с очевидностью любому человеку»[14 - Там же.]. Что же, эта материя есть бесформенная материя Аристотеля или первоматерия неоплатоников? Нет, Декарт отводит и это соображение. «Представим нашу материю настоящим телом, совершенно плотным, одинаково заполняющим всю длину, ширину и глубину того огромного пространства, на котором остановилась наша мысль. Представим далее, что каждая из ее частей всегда занимает часть этого пространства, пропорциональную ее величине, и никогда не может заполнить больший или сжаться в меньший объем или допустить, чтобы одновременно с нею какая-нибудь другая часть материи занимала то же самое место»[15 - Там же.]. Перед нами – декартовская res extensa, материя несжимаемая, непроницаемая, качественно сведенная просто к некоторому объему пространства. Далее эта материя делится на куски разного размера, и они сплошь заполняют все пространство. Три элемента из вводной части этого сочинения отождествляются с тремя типами материальных частиц: крупных, средних и совсем мелких. Декарт формулирует законы движения этих частиц: закон сохранения состояния частиц (включающий в себя закон инерции), закон соударения частиц и др. – и тем самым основания классической механики заложены. Самое главное здесь – возможность применения математики к физике налична здесь по определению: физические вещи сведены к совокупности частиц, имеющих вполне определенные размеры, все можно измерить и изучать с помощью математики.

Остановимся несколько на том способе, которым Декарт вводит закон инерции. Это – чисто богословская аргументация. «Легко понять, что Бог, который, как всем известно, неизменен, действует всегда одинаковым образом», – пишет Декарт[16 - Надо сказать, что этот вывод – из неизменности Бога следует неизменность его действий в мире – есть типичный пример смешения учения о Боге в себе с учением о Божественной экономии, о действиях Бога в мире, о Божественных энергиях – смешении, характерном для католического богословия. Для православного мышления этот вывод, вообще говоря, не имеет смысла. Но для нас сейчас важна не богословская составляющая вопроса, а сам этот удивительный и исторически зафиксированный факт: обоснования основного закона механики с помощью богословия.]. Отсюда следует, что Бог сохраняет состояние любой частицы материи тождественным, пока она не столкнется с другой. «…Если частица имеет некоторую величину, она никогда не станет меньшей, пока ее не разделят другие частицы; если эта частица кругла или четырехугольна, она никогда не изменит этой фигуры, не будучи вынуждена к тому другими; если она остановилась на каком-нибудь месте, она никогда не двинется отсюда, пока другие ее не вытолкнут; и раз уж она начала двигаться, то будет продолжать это движение постоянно с равной силой до тех пор, пока другие ее не остановят или не замедлят ее движения [курсив мой. – В. К]»[17 - Декарт Р. Цит. соч. С. 200.]. Последнее, как легко видеть, и есть формулировка закона инерции. Он отсутствовал в аристотелевской физике, его тщетно пытался доказать Галилей, и, подчеркнем это специально, Декарт вводит его, опираясь именно на богословские предпосылки своей метафизики.

Но ведь все это относится к воображаемому миру!.. А как же быть с действительным?.. Декарт вынужден писать о воображаемом мире не только по соображениям конспирации – слишком сильно католическое богословие связало себя с аристотелизмом. Новая метафизика, как и любая метафизика, не может быть доказана, она принимается в результате определенной убежденности в ее справедливости. Он делает все возможное, чтобы убедить читателя, применяя в том числе и богословские аргументы. «Сам Бог показал нам, что он расположил все вещи по числу, весу и мере, следуя этим истинам[18 - «Ты все расположил мерою, числом и весом». (Книга Премудрости Соломона, 21:11.)]. Познание этих истин настолько естественно для наших душ, что мы не можем не считать их непреложными, когда отчетливо их постигаем. Мы можем даже не сомневаться в том, что если бы Бог сотворил несколько миров, то истины эти были бы столь же достоверными во всех этих мирах, как они достоверны в нашем [воображаемом. – В. К.]. Таким образом, тот, кто сумеет продумать следствия, вытекающие из этих истин и из наших правил [законов движения. – В. К.], сможет узнать действия по их причинам и, если воспользоваться школьной терминологией, сможет иметь доказательства а priori всего того, что может появиться в этом новом мире»[19 - Декарт Р. Цит. соч. С. 206.]. Декартовский философский метод и декартовская метафизика лежат в основании этого рассуждения. Мы ясно и отчетливо постигаем те законы движения, которые он формулирует. А согласно декартовской философии то, что мы постигаем ясно и отчетливо, истинно. Ибо благой Бог, сотворивший нас, существование которого в декартовской системе также необходимо, дал нам разум, способный постигать истину. По Декарту, истины классической механики верны во всех возможных мирах, в том числе и в мире действительном, в котором мы живем. И эти истины можно получать а priori. Путь для развертывания теоретической механики открыт. Подчеркнем, какую существенную роль в обосновании этого пути играют богословские аргументы, и в общем (декартовское понимание познания), и в частном (детали доказательства закона инерции).

Лейбниц дает свой подход к обоснованию математической физики. Но опять это введение некоторой метафизики. Пространство и время, в которых существуют материальные тела, которые суть основа возможности измерений этих тел, не есть для философа нечто субстанциальное (в отличие от Декарта), а изначально связаны с мышлением. «Я неоднократно подчеркивал, – пишет Лейбниц, – что считаю пространство, так же как и время, чем-то чисто относительным: пространство – порядком сосуществований, а время – порядком последовательностей. Ибо пространство с точки зрения возможности обозначает порядок одновременных вещей, поскольку они существуют совместно, не касаясь их специфического способа бытия. Когда видят несколько вещей вместе, то осознают порядок, в котором вещи находятся по отношению друг к другу»[20 - Третье письмо Лейбница Кларку. № 4 // Лейбниц Г. В. Сочинения в 4 томах. Т. 1. М., 1982. С. 441.]. Этот порядок воспринимают лейбницевские монады, «атомы бытия», субстанции. Так что изначально вещи, «тела» даны в восприятии монад, а это восприятие осуществляется в пространстве и времени[21 - Этими конструкциями Лейбниц мостил дорогу Кантовскому пониманию науки]. Но как же согласуются восприятия различных монад, которые «не имеют окон»? Средством для этого у Лейбница является предустановленная Богом гармония. Монады, из которых состоят и органические, и неорганические тела, следуют своим стремлениям, а в то же время поведение неорганических тел в пространстве и времени подчинено законам механики. Лейбницевская механика – феноменологична. Метафизика же, лежащая в ее основе, имеет определенно религиозный характер.

У Ньютона эта метафизическая подкладка его математической физики явно выражена почти в аксиоматической форме. С самого зачина своего знаменитого труда «Математические начала натуральной философии» он объясняет, что ведет построения в абсолютном пространстве и абсолютном времени. «I. Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему протекает равномерно, и иначе называется длительностью»[22 - Ньютон И. Математические начала натуральной философии. Пер. с лат. и комментарии А. Н. Крылова. М., 1989. С. 30.]. «П. Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему остается всегда одинаковым и неподвижным»[23 - Там же.]. И абсолютное пространство, и абсолютное время являются здесь евклидовыми геометрическими пространствами, то есть пространствами, в которых можно производить измерения, применять математику. Причем пространства эти существенно бесконечные. Ньютон специально отграничивает свое понимание пространства от аристотелевского «места». По Ньютону, место – понятие геометрическое: «Место есть часть пространства, занимаемая телом, и по отношению к пространству бывает или абсолютным, или относительным. Я говорю «часть пространства», а не положение тела и не объемлющая его поверхность»[24 - Цит. соч. С. 31.]. Что гарантирует это отождествление геометрического пространства и физического? Ньютон не разбирает этого вопроса специально, но по его отдельным замечаниям можно заключить, что это богословские аргументы. В конце книги в «Общем поучении» Ньютон пишет, что то гармоничное сочетание движений Солнца и планет, которые предсказывает его теория и подтверждает эксперимент, «…не могло произойти иначе, как по намерению и по власти могущественного и премудрого существа»[25 - Цит. соч. С. 659.]. Говоря об этом существе, о Боге, философ-ученый пишет: «Он не есть вечность или бесконечность, но Он вечен и бесконечен, Он не есть продолжительность или пространство, но продолжает быть и всюду пребывает. Он продолжает быть всегда и присутствует всюду, всегда и везде существуя; Он установил пространство и продолжительность. Так как любая частица пространства существует всегда и любое неделимое мгновение длительности существует везде, то несомненно, что Творец и Властитель всех вещей не пребывает где-либо и когда-либо (а всегда и везде)»[26 - Цит. соч. С. 660.].

В «Оптике» Ньютона также есть общефилософские рассуждения, в которых ученый говорит о своих метафизических предпосылках. Гармония органов природных существ несомненно свидетельствует, по Ньютону, о мудрости и искусстве их Творца. «… Пребывая всюду, он более способен своею волею двигать тела внутри своего безграничного чувствилища и благодаря этому образовывать и преобразовывать части вселенной, чем мы посредством нашей воли можем двигать части наших собственных тел [курсив мой. – В. К.]»[27 - Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. М.; Л., 1927. С. 313. И, однако, подчеркивает Ньютон далее, мы не можем рассматривать мир как тело Бога или Бога как душу мира (см. там же).]. Тем самым пространство и время физической картины мира, даваемой классической механикой, оказываются чувствилищем Бога. Это гарантирует и их абсолютность, и их бесконечность. Именно так, через призму богословского видения, идея бесконечности вселенной входит в науку и, шире, в общекультурное сознание XVIII века, становясь со временем – с утерей веры в Бога – любопытным парадоксом…

3. «Метафизика геометров»

До этого мы говорили о метафизических предпосылках в физике, так сказать, макро- и мегауровней. Но возникающее в XVII веке новое естествознание вынуждено вводить еще и метафизику микроуровня. Это естествознание, как мы подчеркиваем, становится, в отличие от античной физики, математическим естествознанием. Основным его языком будут дифференциальное и интегральное исчисления и выходящие из них в дальнейшем конструкции: дифференциальные уравнения, теория комплексной переменной, вариационное исчисление и т. д. Дифференциальное и интегральное исчисления кладут в свое основание концепцию актуально бесконечно малой величины[28 - Как и актуально бесконечно большой величины.], то есть такой, которая меньше любой положительной величины, но одновременно и не есть нуль, – живой парадокс. Античная мысль была знакома с подобными понятиями, но именно в силу этой парадоксальности не желала использовать их в науке. Аристотель дает право на существование в науке только потенциальной бесконечности: процессу увеличения натуральных чисел 1,2, 3…., или процессу же бесконечно продолжающегося деления отрезка и его частей на все более мелкие части. Но «каково число всех чисел?» или «можно ли разделить отрезок до конца, до точек?» – на эти вопросы античная наука отказывается отвечать. Актуальная бесконечность нарушает фундаментальные аксиомы науки (например, часть меньше целого), и поэтому ее запрещается использовать в науке. Отрезок можно бесконечно делить, но нельзя сказать, что он состоит из точек: континуум – это качественно другая реальность, чем множество точек. Отказ от этой установки ведет к апориям («парадоксы Зенона»).

Но вот XVII век вводит в науку понятие актуально бесконечных величин. Пионеры науки Нового времени – Галилей, Лейбниц, Ньютон – прекрасно осведомлены об античном табу на актуальную бесконечность, но, тем не менее, они вводят эти новые конструкции и, более того, делают их основным инструментом математического естествознания. История легализации актуальной бесконечности в науке существенным своим моментом имеет христианское богословие. Античная мысль не может допустить спекуляции об актуально бесконечном, грубо говоря, по простой причине: у нее нет бесконечного предмета, к которому можно бы было привязать эти рассуждения. Но вот с приходом христианства такой «предмет» появляется: христианский Бог довольно быстро, хотя и не сразу, осознается богословами как бесконечно могущественный, бесконечно благой, бесконечно мудрый[29 - Подробнее см. мои работы: Катасонов В. Н. Концепция актуальной бесконечности как «научная икона» Божества // Христианство, наука, культура. М., 2005; Катасонов В. Н. Боровшийся с бесконечным. Философско-религиозные аспекты генезиса теории множеств Г. Кантора. М., 1999.]. Богословы начинают рассуждать о бесконечности Бога, о возможности разных степеней бесконечности, о существовании бесконечностей в тварном мире и т. д. Ко времени поздней схоластики в западном богословии уже налицо целая «культура» обсуждений и конструкций с актуальной бесконечностью, причем не только богословских, но и натурфилософских[30 - См. об этом, например, в прекрасной книге: Зубов В. П. Развитие атомистических представлений до начала XIX века. М., 1965. Гл. П.]. Возрождение с его интересом к оккультизму и пафосом «раскрытия тайн» еще более узаконивает тему бесконечности. Поэтому не удивительно, что XVII столетие легализует концепцию актуальной бесконечности и в науке, в дифференциальном и интегральном исчислениях.

Легализует, но при этом ясно осознает, что тем самым строится уже новая наука. Лейбниц, один из создателей дифференциального и интегрального исчислений, прекрасно понимал, что с ними неизбежно приходит некая новая метафизика: «…Судьба даровала нашему веку прежде всего то, что после столь долгих лет забвения вновь воссиял светоч математики, как я его называю. Ведь были открыты и развиты Архимедовы способы исчерпывания через неделимые и бесконечные, что можно было бы назвать метафизикой геометров, и что, если я не ошибаюсь, было неизвестно большинству древних, за исключением Архимеда» [курсив мой. – В. К.][31 - Элементы разума. С. 452 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3. М., 1984.].

Что же это за новая геометрическая метафизика? Речь идет о введении неких новых постулатов в геометрию, необходимых для конструкций дифференциального исчисления. Так, в одном из первых учебников дифференциального исчисления маркиза Г. Ф. Лопиталя, ученика и соратника Лейбница, в деле развития этого нового учения мы читаем: вводится «…требование или допущение: требуется, чтобы можно было рассматривать кривую линию как совокупность бесконечного множества бесконечно малых прямых линий, или же (что то же самое) как многоугольник с бесконечным числом бесконечно малых сторон…»[32 - Лопиталь Г. Ф. Анализ бесконечно малых. М.; Л., 1935. С. 63–64.]. То, что многоугольник, вписанный, например, в окружность, при бесконечном увеличении (удвоении) его сторон будет стремиться к окружности, это, конечно, античные математики знали и даже использовали в своих вычислениях. Однако никто не считал на основании этого, что окружность есть бесконечный многоугольник с бесконечно малыми сторонами!.. Более того, острое чувство качественного отличия окружности от любого многоугольника, кривой от прямой, за которым стоял глубоко осознанный опыт онтологических рангов реальности, приводил к тому, что это соотношение вписанного многоугольника и описанной окружности нередко понимали как символ соотношения рассудочного знания и реальности: кажущаяся близость, но принципиальное внутреннее отличие…

Но как раз от этого различения и отказывается XVII столетие. Речь идет именно о введении новой метафизики. Речь не идет о каком-то эмпирическом факте, который кто-то когда-то открыл и увидел: ведь увидеть эти бесконечно малые нельзя ни в какой микроскоп. Лейбниц, как мы уже отмечали, отлично понимает этот метафизический характер нового постулата. Еще одна цитата: в одном письме к Мальбраншу, говоря о путях промысла Божия, Лейбниц пишет: «В сущности ничто не является для Него безразличным, и ни одна тварь и ни одно действие твари не считаются у Него ничтожными, хотя в сравнении с Ним они почти ничто. Свои взаимоотношения они сохраняют и перед Ним, подобно тому как линии, которые мы рассматриваем как бесконечно малые, имеют практически важные соотношения, несмотря на то что в сравнении с обычными линиями они кажутся ничтожными. Кажется, я уже пользовался этим сравнением»[33 - Лейбниц – Мальбраншу. С. 338 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3. М., 1984.]. Сравнение любопытно. На первый взгляд здесь ставятся в параллель отношения Бога к твари и отношение обычных линий к бесконечно малым. Хотя несколько странно, что Бог уподобляется «обычной линии»… В то же время говорится: «линии, которые мы рассматриваем как бесконечно малые». Мы рассматриваем эти линии как бесконечно малые, аналогично тому, как Бог смотрит на тварь, которая по сравнению с ним почти ничто. Наше отношение к этим постулируемым бесконечно малым линиям подобно отношению Бога к твари. То есть мы смотрим на них как бы с точки зрения Бога, с точки зрения самой Истины. Другими словами, это действительно некоторая сверхопытная метафизика…

С ней уже в XVII веке было много несогласных. Декарт так и не принял метода бесконечно малых. Известны острые инвективы Беркли против геометрических построений в бесконечно малых треугольниках и точках. С критикой использования актуальной бесконечности выступали Б. Паскаль и А. Арно[34 - См. мою статью: Концепция актуальной бесконечности как «научная икона» Божества // Катасонов В. Н. Христианство, Наука, Культура. М., 2005.]. И действительно, ведь если метод дифференциального исчисления держится на вышеупомянутом постулате[35 - То есть из учебника Г. Ф. Лопиталя.], а последний есть только достаточно произвольное положение (мы не столько знаем, что так есть, сколько требуем, желаем, чтобы так было), то тогда все знание, выводимое с помощью дифференциального исчисления, становится в высшей степени условным. Так же как в истории со знаменитым пятым постулатом Евклида, когда оказалось, что его можно заменить на другие положения, и тогда получатся другие типы геометрии, так же и здесь, может быть, можно предложить постулировать другие свойства пространства, и тогда мы получим совсем иную геометрию?.. А наша, лейбницевско – лопиталевская форма геометрии есть только лишь некая частная форма, одна из возможных точек зрения на пространство и на все, в нем находящееся…

Все построения с бесконечно малыми рассматриваются Лейбницем не только в геометрии, но и в физике, в создаваемой при его существенном участии новой науке, классической механике. Здесь, между прочим, ясно выступают истинные причины той новой «метафизики геометров», о которой говорил Лейбниц. Ученый и философ отлично понимает, что введение новых законов механики требует их обоснования. Поэтому наряду с законами механики он формулирует и другие законы, более высокого логического порядка. Лейбниц называет их архитектоническими принципами. Причем последние прямо связываются философом с Божественной мудростью: «…все природные явления можно объяснить механически, если мы в достаточной мере сумеем понять их, но сами принципы механики не могут быть объяснены геометрически, так как они зависят от более высоких принципов, которые указывают на мудрость Творца порядком и совершенством своего творения»[36 - Лейбниц Г. В. Анагогический опыт исследования причин. С. 129 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3.]. Одним из фундаментальных архитектонических принципов у Лейбница является принцип непрерывности: «Когда случаи (или то, что дано) непрерывно сближаются и наконец сливаются друг с другом, необходимо, чтобы следствия, или результаты (или то, что ожидается), претерпевали то же»[37 - Письмо господина Лейбница о всеобщем принципе, пригодном для объяснения законов природы с точки зрения божественной мудрости, служащее отзывом на ответ преподобного отца Мальбранша. С. 357 // Лейбниц Г. В. Сочинения в 4 томах.]. Принцип непрерывности означает, что в мире нет скачков, hiatus'ов – «зияний», которые были бы необъяснимы. За принципом непрерывности стоит в конце концов логическая непрерывность, принцип достаточного основания: все происходящее должно иметь достаточную причину, что оно таково, а не иное. Иначе была бы скомпроментирована разумность творения, премудрость Бога. Лейбницевский рационализм в этом смысле есть некий сверхрационализм, основывающийся на богословских аргументах. Но поскольку он выступает как философия человеческого познания, он может оборачиваться и титаническим рационализмом, как претензией на окончательное познание всего сущего… Принцип непрерывности служит основанием для переосмысления и самого движения. «Это же правило, – пишет Лейбниц, – имеет место в физике, например, состояние покоя можно рассматривать как бесконечно малую скорость и бесконечно большую медленность. Поэтому все, что истинно в отношении медленности или скорости, должно оправдывать себя и применительно к покою, рассматриваемому с той точки зрения и, таким образом, правило покоя должно быть расценено как частный случай правила движения… Точно так же равенство может рассматриваться как бесконечно малое неравенство, и можно сколь угодно сближать неравенство с равенством»[38 - Цит. соч. С. 358.]. Сколь угодно малое сближение неравенства и равенства означает не только то, что равенство можно понимать как бесконечно малое неравенство, но и неравенство как бесконечную цель бесконечно малых равенств. Аналогично не только покой можно интерпретировать как бесконечно медленное движение, но и движение рассматривать как бесконечную сумму бесконечно малых движений, а бесконечно малое движение и есть, в свою очередь, покой. Другими словами, Лейбниц как бы принимает классическое построение Зеноновского парадокса «Стрела»: «движение есть бесконечная сумма состояний покоя; но покой заменяется здесь бесконечно малым движением». На языке классической механики это означает введение понятия мгновенной скорости. Понятия такого же парадоксального, как и бесконечно малое движение, то есть скорости тела, находящегося в данной точке.

4. Дискретность как научно-методологический и метафизический принцип

Лейбницевские метафизические обоснования новой математики и физики недолго занимают собственно ученых. Идеал ученого-энциклопедиста, знающего и занимающегося всем или почти всем, постепенно, по мере развития науки становится недостижимым. Заниматься опытной наукой и одновременно обсуждать философские, а тем более богословские основания этой науки становится все труднее. Наконец, с середины XIX века О. Конт вообще объявляет эти проблемы ненаучными. Кроме того, разрастающееся здание математики и ее успешное применение к естествознанию и технике как бы несли оправдание этих новых методов в самих себе. Однако наиболее глубокие и принципиальные ученые никогда не оставляли надежды получить какое-то обоснование той метафизике геометров, которая была связана с дифференциальным и интегральным исчислением.

1 2 >>
На страницу:
1 из 2