Оценить:
 Рейтинг: 0

Законы и закономерности развития систем. ТРИЗ. Изд. 2-е, испр. и дополненное

Год написания книги
2022
<< 1 ... 28 29 30 31 32 33 34 35 36 ... 56 >>
На страницу:
32 из 56
Настройки чтения
Размер шрифта
Высота строк
Поля

Разъемные соединения могут осуществляться и с помощью, разрушения части соединения, но не разрушающих контактирующие части. Например, растворение клеевых соединений, нагревом легкоплавких веществ (парафин, воск и т. п.; легкоплавкие металлы: олово, свинец и т. д.) и т. п.

Сначала монолит разбивается на две части (на рис. 5.46 – 1.1а). Дальнейшее разбиение приводит к увеличению количества частей в системе (1.1b, c, d).

На следующем этапе 1.2 соединение частей осуществляется с помощью посредника. Сначала, посредник, осуществляющий соединение, делают жестким – этап 1.2а, затем число связей-посредников увеличивается – этап 1.2b, связи становятся более гибкими (шарнирными, пружинными, другими гибкими частями и т. п.) – этап 1.2c.

Примером этапов 1.2а—1.2b могут служить конструкции типа штанги, фермы и т. д. Они так же, как и в случае 1.1, могут быть разборные и неразборные.

И, в конце концов, происходит переход к полностью гибкому объекту (2).

Переход от гибкого к порошкообразному состоянию

Последовательность, подобная рис. 5.46, характерна и для перехода от эластичного вещества (2) к порошкообразному (3). Она изображена на рис. 5.47.

Первоначально гибкий объект разбивается на части, вплотную присоединенные друг к другу (2.1а). Это соединение может быть разъемным и неразъемным. Дальнейшее разбиение приводит к увеличению количества частей в системе (2.1b, c, d). Для повышения эффективности конструкций используются физические эффекты, например, предварительно напряженные, вантовые, надувные и гидравлические конструкции.

На следующем этапе гибкие конструкции соединяются гибкими связями (2.2a, b, c). Необходимо учесть, что постепенно число частей увеличивается, а связи между ними становятся все более гибкими.

Далее объект разбивается ни отдельные не связанные между собой части (3.1). Части измельчаются вплоть до микрочастиц, микросфер, порошка.

Рис. 5.47. Линия перехода от гибкого состояния к порошкообразному

Гели (от лат. gelo – застываю), дисперсные системы с жидкой или газообразной дисперсионной средой, обладающие некоторыми свойствами твердых тел: способностью сохранять форму, прочностью, упругостью, пластичностью. Эти свойства гелей обусловлены существованием у них структурной сетки (каркаса), образованной частицами дисперсной фазы, которые связаны между собой молекулярными силами различной природы[54 - Гели – Большая Советская Энциклопедия. Т. 6. – М.: Советская энциклопедия, 1971, С. 192.].

В гелях происходит переход от густых гелей к менее плотным вплоть до густых жидкостей.

Увеличения степени дробления в жидкости происходит от использования очень вязких жидкостей вплоть до летучих жидкостей.

Аэрозоли (от аэро,aerо – воздух и золи,solucio – раствор), дисперсные системы, состоящие из мелких твердых или жидких частиц, взвешенных в газообразной среде (обычно в воздухе)[55 - Аэрозоли – Большая Советская Энциклопедия. Т. 2. – М.: Советская энциклопедия, 1970, С. 485—486; Википедия.].

Увеличения степени дробления в аэрозолях происходит к все большему содержания газа и уменьшению количества жидкости.

Практически аэрозоль представляет собой одно из состояний, которое мы назвали «пена» – этап 9.

Увеличения степени дробления в газах происходит от использования тяжелых газов вплоть до самого легкого – водорода.

Тенденция уменьшения степени дробления

Эта тенденция противоположна (анти-тенденция) тенденции увеличения степени дробления.

Тенденция уменьшения степени дробления – это постепенный переход от поля к газообразному, жидкому и твердому состоянию.

Рассмотрим более детально последовательность уменьшения степени дробления. Она представлена на рис. 5.48.

Эта последовательность характеризуется переходом от поля (1) к газообразному состоянию (2), далее переходу к аэрозолям (3), к жидкостям (4), к гелю (5), к порошкообразному состоянию (6), к гибкому (8) и к твердому монолитному состоянию (9).

Рис. 5.48. Схема тенденции уменьшения степени дробления

Тенденция перехода к капиллярно-пористым материалам (КПМ)

Тенденция перехода к капиллярно-пористым материалам (КПМ) – это постепенный переход от сплошного вещества к веществу с полостью, к веществу со многими полостями, к капиллярно-пористому веществу, к капиллярно-пористому веществу на микроуровне.

Графически тенденция перехода к капиллярно-пористым материалам (КПМ) представлена на рис. 5.49.

1. Сплошное вещество, твердое (1) или эластичное (2).

2. Вещество с одной полостью – полость с оболочкой (A).

3. Вещество со многими полостями (ячейками), перфорированное вещество или полость, разделенная перегородками (B).

4. Капиллярно-пористое вещество – КПМ (C).

5. КПМ на микроуровне (D) – на схеме обозначены как µКПМ.

Рис. 5.49. Переход к капиллярно-пористым материалам (КПМ)

где

1 – монолит в твердом состоянии;

2 – монолит в гибком состоянии;

A – вещество с одной полостью;

B – вещество со многими полостями;

C – КПМ;

D – µКПМ;

КПМ – капиллярно-пористый материал;

µКПМ – микро-КПМ.

На этапах A и B используются макро-полости, а на C и D – капилляры.

Отличие этапов A от B и C от D в размерах полостей и капилляров, соответственно.

Разметы полостей от этапа (A) могут быть сотни метров, десятки метров до метра. На этапе (B) размеры ячеек измеряются десятками сантиметров, сантиметрами или миллиметрами, но не метрами.

Переход от состояния 1 (2) к A, как правило, идет скачком.

Переходы от A к B, от B к C и от C к D осуществляются постепенно. Переход от A к B показан на рис. 5.50.

A1 – вещество с одной полостью,

A2 – вещество с двумя полостями,

A3-A4 – вещество со многими полостями,
<< 1 ... 28 29 30 31 32 33 34 35 36 ... 56 >>
На страницу:
32 из 56