Оценить:
 Рейтинг: 0

Архив «Экологической гласности». 1988-2016

Год написания книги
2023
<< 1 ... 14 15 16 17 18 19 20 21 22 ... 29 >>
На страницу:
18 из 29
Настройки чтения
Размер шрифта
Высота строк
Поля

– уязвимый для внешних и внутренних воздействий.

В связи с этим следует уделить повышенное внимание обеспечению его безопасности в местах базирования, шельфовых работ, в местах технического обслуживания и ремонта. Также необходимо учитывать опасности, связанные с проникновением на борт ПБК потенциальных террористов в составе экипажа.

5.2. Вероятные последствия развития аварийной ситуации

Анализ развития аварийных ситуаций показывает, что знания и опыт полученные в результате предыдущих аварий не воспринимаются и не учитываются при борьбе с последующими авариями. Это определяется сложностью условий, в которых экипаж преодолевает аварийную ситуацию и особенностью психологического состояния экипажа подводного корабля, терпящего бедствие.

Мы располагаем достаточно репрезентативными, хотя и далеко не полными, статистическими данными относительно аварийности в ходе эксплуатации советских подводных плавучих объектов военного назначения – атомных подводных лодок, находящихся в эксплуатации более 50 лет. Поскольку ПБС по ряду своих характеристик сопоставимо с АПЛ, имеющиеся данные можно считать пригодными для оценки последствий развития аварийных ситуаций на подводном буровом судне.

В Советском Союзе, а позже – в России накоплен опыт эксплуатации 260 АПЛ. Общий срок эксплуатации всех АПЛ – от принятия в состав флота до вывода из эксплуатации – составляет 5.000 лет.

Методика подсчета применялась следующая. Были просуммированы сроки эксплуатации всех АПЛ – от принятия в состав флота до вывода из эксплуатации – и разделены на общее количество АПЛ. Сроки эксплуатации АПЛ составляют от 3 лет до 30 лет. Средняя продолжительность активной эксплуатации каждой АПЛ составляет около 20 лет.

Информация относительно аварийности на АПЛ является менее известным параметром. Опубликованы сведения лишь о некоторых, наиболее серьезных по последствиям авариях, которые по разным причинам не удалось скрыть. В связи с этим приведенные данные относительно аварийности на советских АПЛ можно считать заниженными. Согласно опубликованным данным, только с 1970 по 1990 гг. на АПЛ ВМФ СССР было зарегистрировано 338 аварийных ситуаций, связанных с выходом радиоактивных веществ за пределы ядерной энергетической установки с превышением радиационного фона.

Все известные и описанные аварии, происходившие за период опытной и практической эксплуатации АПЛ (5.000 лет для 260 АПЛ), можно систематизировать следующим образом:

– аварии с ядерной энергетической установкой (ЯЭУ) / в т.ч. с гибелью части экипажа (54 / 3);

– возгорания, пожары, взрывы / в т.ч. с гибелью или удушением части экипажа (43 / 16);

– потеря герметичности (попадание забортной воды внутрь прочного корпуса – в т.ч. внутрь реакторного отсека) – как самостоятельная авария / в т.ч. с затоплением и гибелью части экипажа (26 / 4);

– навигационные аварии (34 / 0);

– аварии, связанные с нарушением технологии штатных или ремонтных работ / в том числе с гибелью части экипажа (11 / 1);

– отравление экипажа химическими веществами, в том числе с гибелью части экипажа (1 / 0).

Согласно экспертным оценкам, приведенные данные составляют не более 15% от реального числа тяжелых аварий, при которых был нанесен значительный ущерб имуществу или здоровью людей. То есть приведенные данные могут быть занижены в 6,5 раз по сравнению с реальным числом аварий на АПЛ. Кроме того, в настоящее время мы не располагаем статистическими данными относительно опыта эксплуатации и аварийных ситуаций, имевших место на советских дизель-электрических подводных лодках, численностью значительно превышающих атомные подводные лодки.

Также нет определенных статистических данных относительно уровня аварийности на подводных аппаратах гражданского назначения и на имеющихся стационарных подводных сооружениях (число таких объектов невелико и находится в пределах статистической погрешности).

Последствия развития аварийных ситуаций на подводных плавучих объектах военного назначения:

– поражение людей (травматизм, смертность);

– потери имущества (в натуральном и денежном выражении);

– нанесение ущерба окружающей среде – плавающим в толще воды и донным организмам, разрушение сложившихся и уязвимых экосистем полярных морей (в натуральном и денежном выражении);

Поражение людей в процессе развития аварии на подводном плавучем объекте относится к группе наиболее тяжелых и невосполнимых последствий. Достаточно полные статистические сведения относительно травматизма и гибели членов экипажа в ходе аварий на советских подводных плавучих объектах военного назначения не опубликованы. Согласно экспертным оценкам, базирующимся на публикациях в открытой печати, количество погибших членов экипажа и ремонтных бригад в ходе работ по эксплуатации и техническому обслуживанию подводных плавучих объектов за 50 лет существования советского атомного подводного флота превышает 700 человек. В это число не входят те, кто получил травмы различной тяжести и умер позже – после увольнения из рядов военно-морского флота. На этот счёт нет даже оценочных сведений. Исходя из известных величин численности экипажей, количества и тяжести аварий, можно предположить, что численность этой группы превышает 10.000 человек.

После каждой аварийной ситуации подводный плавучий объект проходит восстановительный ремонт, продолжительность которого (без учета времени следования к месту ремонта) составляет от 1 года до 10 лет – в зависимости от тяжести аварии, технологического и финансового обеспечения работ.

Стоимость восстановительного ремонта подводного плавучего объекта военного назначения составляла от нескольких миллионов рублей (середина 60-х годов ХХ века) до 350 млн. рублей (конец 80-х годов ХХ века).

В ходе восстановительного ремонта нередко вскрываются дефекты в конструкции подводного плавучего объекта или ошибки при выборе материалов, что существенно повышает стоимость и продолжительность ремонта. Примерно в половине известных случаев, восстановительный ремонт по стоимости превышал строительство нового подводного корабля.

Нанесение ущерба окружающей среде в ходе штатной эксплуатации подводного плавучего объекта военного назначения невелико. Значительную опасность представляют аварийные ситуации, когда в окружающую среду попадают токсичные и радиоактивные вещества, разрушительно влияющие на уязвимые сложившиеся экосистемы приполярных морей.

Никаких оценок размеров подобного экологического ущерба, нанесенного в ходе опытной и практической эксплуатации подводных плавучих объектов военного назначения не опубликовано. В связи с этим ущерб можно оценивать по методикам, существующим для аналогичных надводных плавучих объектов гражданского назначения.

5.6. Выводы

– Аварии на подводных аппаратах с развитием по тяжелому / катастрофическому сценарию является вполне вероятным событием. В подавляющем большинстве случаев развитие аварии происходит стремительно и усугубляется наличием большого количества технологического оборудования в сравнительно небольшом замкнутом объеме.

– Наиболее характерная для морских буровых и «добычных» платформ авария с катастрофическими последствиями – пожар и взрыв. Для подводных аппаратов – разгерметизация прочного корпуса, которая может стать последствием взрыва или пожара, внешним воздействием или ошибочными действиями экипажа.

– Для подводных аппаратов, к которым относится ПБC, не разработана документация по количественной оценке риска и требования норм безопасности. При отсутствии нормативных требований Регистра к подводным обитаемым промышленным объектам проектанту следует ориентироваться на нормы и опыт военного подводного кораблестроения, строительства морских платформ и на здравый смысл. Для проведения количественной оценки риска необходимо проанализировать различные сценарии, оценить характер и количество потерь, вероятно возникающих при реализации конкретного сценария.

– При оценке внешних рисков, не связанных с деятельностью ПБС, следует уделить особое внимание опасностям, связанным с фонтанированием и неконтролируемым «газопроявлением» скважины. Геологические условия южной части Карского предполагают вероятность подобного события, которое способно привести к потере ПБС.

– При анализе риска возможных аварийных ситуаций, кроме неконтролируемого выхода газа из скважины также необходимо рассматривать следующие события: пожар, взрыв, струйное горение газа, разгерметизация подводного аппарата.

– Количественный анализ опасностей, связанных с эксплуатацией ПБС, необходимо осуществлять на этапе эскизного проектирования, в процессе проработки всех возможных технических решений и компоновочных схем. Расчеты необходимо проводить не только со статистическими параметрами возможности отказов, но также для множества вариантов компоновочных решений.

– Отсутствие в районе предполагаемых работ отработанных систем спасения экипажей плавучих подводных аппаратов потребует создания и разворачивания специализированной системы спасения, базирующейся в районе работ или в пределах досягаемости – что потребует дополнительного финансирования.

Часть 6. Экономическая оценка

6.1. Сведения о запасах и общая оценка стоимости освоения

Сведения об извлекаемых запасах энергетического ресурса являются основным элементом при расчетах коммерческой эффективности освоения месторождения. Поэтому вокруг этих данных заинтересованными организациями всегда ведётся «игра на повышение» – с целью преувеличения коммерческой привлекательности месторождения для потенциальных инвесторов. Данные относительно запасов российских месторождений нефти и газа закрыты для экспертного сообщества решением правительства РФ и ведомственными документами, поэтому анализировать возможно лишь оценочные сведения – которые существенно различаются в разных источниках.

Поскольку в данном исследовании преимущественно оцениваются технические решения для обустройства и добычи природного газа на Русановском (открыто в 1989 г.) и Ленинградском (открыто в 1991 г.) месторождениях природного газа и газового конденсата – рассмотрим опубликованные данные относительно объёмов предположительно извлекаемых запасов, содержащихся в этих месторождениях. При этом следует иметь в виду, что источником данных преимущественно являются сообщения руководителей компании «Газпром». Поскольку эта компания заинтересована в более высокой капитализации, есть основания полагать, что приводимые данные являются завышенными. Других причин скрывать данные о разведанных запасах мы не видим.

Общие прогнозные оценки запасов углеводородного сырья в шельфовой зоне Карского и Баренцева морей оцениваются заинтересованными в продвижении атомных технологий в нефтегазовый сектор Арктики организациями в 65 млрд т у. т (тонн условного топлива). Из этого количества запасы углеводородов Карского моря оцениваются в 28 млрд. т у. т, причем 80% этих запасов находятся на участках шельфа с глубинами более 70 м, а 70% площади шельфовой зоны покрыты многолетними дрейфующими льдами.

Найти данные о запасах природного газа, которые можно было бы счесть достоверными, достаточно сложно. В одних источниках общие извлекаемые запасы наиболее перспективных газовых месторождений – Штокмановского, Русановского и Ленинградского оцениваются в 10 – 11 трлн. м

, в других запасы только Русановского и Ленинградского месторождений оцениваются в 9 – 10 трлн. м

. Причем по двум последним месторождениям выводы о запасах делаются лишь по двум пробуренным скважинам глубиной около 2.500 м. на каждом из них. Хотя четыре поисковые скважины оцениваются специалистами как высокодебитные – с суточной добычей до 600 тыс. м

(следовательно, годовая добыча на каждой скважине при самом благоприятном стечении обстоятельств может составить 200 млн. м

) – по ним трудно сделать объективную оценку величины запасов. По мнению тех же специалистов, для получения более достоверной оценки требуется пробурить не менее 40 тыс. м разведочных скважин на обоих месторождениях, то есть не менее 10 скважин на каждом из них.

Привлекает внимание тот факт, что ранее опубликованные сведения дают более значительные запасы природного газа на шельфе Карского моря по сравнению с опубликованными недавно. Если в 2000 г. запасы Русановского месторождения только на верхнем горизонте (1.500 м) оценивались в 1,05 трлн. м

и ещё 2,1 трлн. м

 – на горизонте 2.500 м (общие запасы – 3,15 трлн. м

), то в 2006—2007 гг. речь идет об общих предположительных запасах в объеме 780 млрд м

газа. То же самое произошло с предположительными запасами Ленинградского месторождения. В 2000 г. они оценивались в 1,5 трлн. м
<< 1 ... 14 15 16 17 18 19 20 21 22 ... 29 >>
На страницу:
18 из 29