On the 14th day after taking the pupæ from the ice, 1 Telamonides emerged from a chrysalis which had been placed in the ice-box three days after pupation, and was on ice sixteen days.
On 19th day, 1 Telamonides emerged from a pupa put on the ice twelve hours after pupation, and kept there eleven days.
On 19th day, 1 Walshii emerged from a pupa two hours old, and on ice eleven days.
All the rest emerged Marcellus, unchanged, but at periods prolonged in a surprising way.
Five chrysalides lived through the winter, and all gave Telamonides in the spring of 1879.
It appeared, therefore, that the only effect produced by cold in all chrysalides exposed more than three days after pupation was to retard the emergence of the butterfly. But even in some of these earliest exposed, and kept on the ice for full nineteen days, the only effect seemed to be to retard the butterfly.
Exp. 3. – In June, 1879, eggs of the form Marcellus were obtained, and in due time gave 104 chrysalides. Of these one-third were placed in the ice-box at from twelve to twenty-four hours after pupation, and were divided into 3 lots.
Temperature 0°-1° R. most of the time, but varying somewhat as the ice melted. (Both in 1878 and 1879 Mr. Edwards watched the box himself, and endeavoured to keep a low temperature.)
Of the 69 chrysalides not exposed to cold, 34 gave butterflies at from eleven to fourteen days after pupation, and 1 additional male emerged 11th August, or twenty-two days at least past the regular period of the species.
Of the iced chrysalides, from lot No. 1 emerged 4 females at eight days and a half to nine days and a half after removal from the ice, and 5 are now alive (Nov. 18) and will go over the winter.
From lot No. 2 emerged 1 male and 5 females at eight to nine days; another male came out at forty days; and 5 will hibernate.
From lot No. 3 emerged 4 females at nine to twelve days; another male came out at fifty-four days; and 6 were found to be dead.
In this experiment the author wished to see as exactly as possible – First, in what points changes would occur. Second, if there would be any change in the shape of the wings, as well as in markings or coloration – that is, whether the shape might remain as that of Marcellus, while the markings might be of Telamonides or Walshii; a summer form with winter markings. Third, to ascertain more closely than had yet been done what length of exposure was required to bring about a decided change, and what would be the effect of prolonging this period. After the experiments with Phyciodes Tharos, which had resulted in a suffusion of colour, the author hoped that some similar cases might be seen in Ajax. The decided changes in 1878 had been produced by eleven and sixteen days’ cold. In 1877, an exposure of two days and three-quarters to eight days had failed to produce an effect.
From these chrysalides 11 perfect butterflies were obtained, 1 male and 10 females. Some emerged crippled, and these were rejected, as it was not possible to make out the markings satisfactorily.
From lot No. 1, fourteen days, came: —
1 female between Marcellus and Telamonides.
2 females, Marcellus.
These 2 Marcellus were pale coloured, the light parts a dirty white; the submarginal lunules on hind wings were only two in number and small; at the anal angle was one large and one small red spot; the frontal hairs were very short. The first, or intermediate female, was also pale black, but the light parts were more green and less sordid; there were 3 large lunules; the anal red spot was double and connected, as in Telamonides; the frontal hairs short, as in Marcellus. These are the most salient points for comparing the several forms of Ajax. In nature, there is much difference in shape between Marcellus and Telamonides, still more between Marcellus and Walshii; and the latter may be distinguished from the other winter forms by the white tips of the tails. It is also smaller, and the anal spot is larger, with a broad white edging.
From lot No. 2, twenty days, came: —
1 female Marcellus, with single red spot.
1 female between Marcellus and Telamonides; general coloration pale; the lunules all obsolescent; 2 large red anal spots not connected; frontal hairs medium length, as in Telamonides.
1 female between Marcellus and Telamonides; colour bright and clear; 3 lunules; 2 large red spots; frontal hairs short.
1 female Telamonides; colours black and green; 4 lunules; a large double and connected red spot; frontal hairs medium.
2 female Telamonides; colours like last; 3 and 4 lunules; 2 large red spots; frontal hairs medium.
From lot No. 3, twenty-five days, came: —
1 male Telamonides; clear colours; 4 large lunules; 1 large, 1 small red spot; frontal hairs long.
1 female Telamonides; medium colours; 4 lunules; large double connected red spot; frontal hairs long.
In general shape all were Marcellus, the wings produced, the tails long.
From this it appeared that those exposed twenty-five days were fully changed; of those exposed twenty days, 3 were fully, 2 partly, 1 not at all; and of those exposed fourteen days, 1 partly, 2 not at all.
The butterflies from this lot of 104 chrysalides, but which had not been iced, were put in papers. Taking 6 males and 6 females from the papers just as they came to hand, Mr. Edwards set them, and compared them with the iced examples.
Of the 6 males, 4 had 1 red anal spot only, 2 had 1 large 1 small; 4 had 2 green lunules on the hind wings, 2 had 3, and in these last there was a 4th obsolescent, at outer angle; all had short frontal hairs.
Of the 6 females, 5 had but 1 red spot, 1 had 1 large 1 small spot; 5 had 2 lunules only, 1 had 3; all had short frontal hairs.
Comparing 6 of the females from the iced chrysalides, being those in which a change had more or less occurred, with the 6 females not iced:
1. All the former had the colours more intense, the black deeper, the light, green.
2. In 5 of the former the green lunules on hind wings were decidedly larger; 3 of the 6 had 4 distinct lunules, 1 had 3, 1 had 3, and a 4th obsolescent. Of the 6 females not iced none had 4, 2 had 2, and a 3rd, the lowest of the row, obsolescent; 3 had 3, the lowest being very small; one had 3, and a 4th, at outer angle, obsolescent.
3. In all the former the subapical spot on fore wing and the stripe on same wing which crosses the cell inside the common black band, were distinct and green; in all the latter these marks were either obscure or obsolescent.
4. In 4 of the former there was a large double connected red spot, and in one of the 4 it was edged with white on its upper side; 2 had 1 large and 1 small red spot. Of the latter 5 had 1 spot only, and the 6th had 1 spot and a red dot.
5. The former had all the black portions of the wing of deeper colour but less diffused, the bands being narrower; on the other hand, the green bands were wider as well as deeper coloured. Measuring the width of the outermost common green band along the middle of the upper medium interspace on fore wing in tenths of a millimetre, it was found to be as follows:
Measuring the common black discal band across the middle of the lower medium interspace on fore wing:
In other words the natural examples were more melanic than the others.
No difference was found in the length of the tails or in the length and breadth of wings. In other words, the cold had not altered the shape of the wings.
Comparing 1 male iced with 6 males not iced:
1. The former had a large double connected red anal spot, edged with white scales at top. Of the 6 not iced, 3 had but 1 red spot, 2 had 1 large 1 small, 1 had 1 large and a red dot.
2. The former had 4 green lunules; of the latter 3 had 3, 3 had only 2.
3. The former had the subapical spot and stripe in the cells clear green; of the latter 1 had the same, 5 had these obscure or obsolescent.
4. The colours of the iced male were bright; of the others, 2 were the same, 4 had the black pale, the light sordid white or greenish-white.
Looking over all, male and female, of both lots, the large size of the green submarginal lunules on the fore wings in the iced examples was found to be conspicuous as compared with all those not iced, though this feature is included in the general widening of the green bands spoken of.
In all the experiments with Ajax, if any change at all has been produced by cold, it is seen in the enlarging or doubling of the red anal spot, and in the increased number of clear green lunules on the hind wings. Almost always the frontal hairs are lengthened and the colour of the wings deepened, and the extent of the black area is also diminished. All these changes are in the direction of Telamonides, or the winter form.
That the effect of cold is not simply to precipitate the appearance of the winter form, causing the butterfly to emerge from the chrysalis in the summer in which it began its larval existence instead of the succeeding year, is evident from the fact that the butterflies come forth with the shape of Marcellus, although the markings may be of Telamonides or Walshii. And almost always some of the chrysalides, after having been iced, go over the winter, and then produce Telamonides, as do the hibernating pupæ in their natural state. The cold appears to have no effect on these individual chrysalides.[59 - This is a striking illustration of the diversity of individual constitution so frequently insisted on by Dr. Weismann in the foregoing portion of this work.]
With every experiment, however similar the conditions seem to be, and are intended to be, there is a difference in results; and further experiments – perhaps many – will be required before the cause of this is understood. For example, in 1878, the first butterfly emerged on the fourteenth day after removal from ice, the period being exactly what it is (at its longest) in the species in nature. Others emerged at 19–96 days. In 1879, the emergence began on the ninth day, and by the twelfth day all had come out, except three belated individuals, which came out at twenty, forty, and fifty-four days. In the last experiment, either the cold had not fully suspended the changes which the insect undergoes in the chrysalis, or its action was to hasten them after the chrysalides were taken from the ice. In the first experiment, apparently the changes were absolutely suspended as long as the cold remained.