Оценить:
 Рейтинг: 0

Studies in the Theory of Descent, Volume I

Год написания книги
2017
<< 1 ... 4 5 6 7 8 9 10 11 12 ... 25 >>
На страницу:
8 из 25
Настройки чтения
Размер шрифта
Высота строк
Поля

Aug. Weismann pinx.

Lith. J. A. Hofmann, Würzburg.

Plate II.

Aug. Weismann pinx.

Lith. J. A. Hofmann, Würzburg.

EXPLANATION OF THE PLATES

Plate I (#Plate_I)

Fig. 1. Male Araschnia Levana, winter form.

Fig. 2. Female A. Levana, winter form.

Fig. 3. Male A. Levana, artificially bred intermediate form (so-called Porima).

Fig. 4. Female A. Levana, intermediate form (Porima), artificially bred from the summer generation, agreeing perfectly in marking with the winter form, and only to be distinguished from it by the somewhat darker ground colour.

Fig. 5. Male A. Levana, summer form (Prorsa).

Fig. 6. Female A. Levana, summer form (Prorsa).

Figs. 7 to 9. Intermediate forms (Porima), artificially bred from the first summer generation.

Figs. 10 and 11. Male and female Pieris Napi, winter form, artificially bred from the summer generation; the yellow ground-colour of the underside of the hind wings brighter than in the natural winter form.

Figs. 12 and 13. Male and female Pieris Napi, summer form.

Figs. 14 and 15. Pieris Napi, var. Bryoniæ, male and female reared from eggs.

Plate II (#Plate_II)

Fig. 16. Papilio Ajax, var. Telamonides, winter form.

Fig. 17. P. Ajax, var. Marcellus, summer form.

Fig. 18. Plebeius Agestis (Alexis, Scop.), German winter form.

Fig. 19. P. Agestis (Alexis, Scop.), German summer form.

Fig. 20. P. Agestis (Alexis, Scop.), Italian summer form. (The chief difference between figs. 19 and 20 lies on the under-side, which could not be here represented.)

Fig. 21. Polyommatus Phlæas, winter form, from Sardinia; the German winter and summer generations are perfectly similar.

Fig. 22. P. Phlæas, summer form, from Genoa.

Fig. 23. Pararga Ægeria, from Freiburg, Baden.

Fig. 24. P. Meione, southern climatic form of Ægeria from Sardinia.

END OF PART I

Part II. ON THE FINAL CAUSES OF TRANSFORMATION

I. THE ORIGIN OF THE MARKINGS OF CATERPILLARS

INTRODUCTION

The general idea which has instigated the researches described in the present essay has already been expressed in the Preface, where it has also been explained why the markings of caterpillars, and especially those of the Sphinx-larvæ, were chosen for testing this idea.

The task presented itself in the following form: – In order to test the idea referred to, it must be investigated whether all the forms of marking which occur in the Sphinx-larvæ can or cannot be traced to known transforming factors.

That natural selection produces a large number of characters can be as little doubted as that many varying external influences can bring about changes in an organism by direct action. That these two transforming factors, together with their correlatively induced changes, are competent to produce all characters, howsoever insignificant, has indeed been truly asserted, but has never yet been proved. The solution of the problem, however, appeared to me to depend particularly on this point. We are now no longer concerned in proving that a changing environment reacts upon the organism – this has already been shown – but we have to deal with the question whether every change is the result of the action of the environment upon the organism. Were it possible to trace all the forms of markings which occur, to one of the known factors of species transformation, it could be thus shown that here at least an “innate power of development” was of no effect; were this not possible, i. e. did there remain residual markings which could not be explained, then the notion of an “innate principle of development” could not be at once entirely discountenanced.

The attempt to solve this problem should commence by the acquisition of a morphological groundwork, so that the phyletic development of the markings might by this means be represented as far as possible. It cannot be stated with certainty, primâ facie, whether some form of development conformable to law is here to be found, but it soon becomes manifest that such is certainly the case in a great measure. In all species the young caterpillars are differently marked to the adults, and in many the markings change with each of the five stages of growth indicated by the four ecdyses, this gradational transformation of the markings being a “development” in the true sense of the word, i. e., an origination of the complex from the simple, the development of characters from those previously in existence, and never an inconstant, unconnected series of per saltum changes. This development of the markings in individuals very well reveals their phyletic development, since there can be no doubt but that we have here preserved to us in the ontogeny, as I shall establish more fully further on, a very slightly altered picture of the phyletic development. The latter can have been but slightly “falsified” in these cases, although it is indeed considerably abbreviated, and that in very different degrees; to the greatest extent in those species which are most advanced in their phyletic development, and to the least extent in those which are less advanced. From this the value of being able to compare a large number of species with respect to their ontogeny will appear. Unfortunately, however, this has only been possible to a very limited extent.

The youngest larval stages are those which are of the most importance for revealing the phyletic development, because they make us acquainted with the markings of the progenitors of the existing species. For these investigations it is therefore in the first place necessary to obtain fertile eggs. Female Sphingidæ, however, do not generally lay eggs in confinement,[66 - Only the species of Smerinthus can be made to lay eggs regularly in confinement; Macroglossa Stellatarum laid a number in a large gauze-covered breeding-cage; the species of Deilephila could not be induced to lay more than single ones in such a cage. From species of Chærocampa also I never obtained but a few eggs, and from Sphinx and Acherontia never more than single ones.] or at most only a very small number. In the case of many species (Deilephila Galii, D. Lineata, D. Vespertilio, D. Hippophaës) I have for this reason unfortunately been unable to observe the entire development, and such observations would in all probability have given especially valuable information.

I was certainly successful in finding the young larvæ of some of the above as well as of other species on their food-plants, but even in the most favourable instances only individuals of the second stage and generally older. When, however, notwithstanding this imperfection of the materials, and in spite of the important gaps thus inevitably caused in these series of observations, it has nevertheless been possible to form a picture, on the whole tolerably complete, of the phyletic development of the Sphinx-markings, this well indicates what a fertile field is offered by the investigation of this subject, and will, I trust, furnish an inducement to others, not only to fill up the various gaps in the small family of the Sphingidæ, but also to treat other Lepidopterous families in a similar manner. Such an investigation of the Papilionidæ appears to me to be especially desirable; not only of the few European but also of the American and Indian species. We know practically nothing, of the youngest stages of the Papilio larvæ from this point of view. No entomological work gives any description of the form and marking of the newly hatched larvæ, even in the case of our commonest species (Papilio Machaon and P. Podalirius), and I believe that I do not go too far when I assert that up to the present time nobody has observed them at this early stage.[67 - [Eng. ed. Since the appearance of the German edition of this work, numerous descriptions of the young stages of caterpillars have been given, but in all cases without representing the relationship of the forms.] [In the excellent figures of larvæ at various stages of growth, given in some of the more recent works on Lepidoptera, there will be found much material which may be regarded as a contribution to the field of research entered on by the author in the present essay, i. e. the ontogeny and comparative morphology of larval markings, although it is much to be regretted that the figures and descriptions have not been given from this point of view. In his “Butterflies of North America,” for example, W. H. Edwards figures the young as well as the adult larvæ of species of Apatura, Argynnis, Libythea, Phyciodes, Limenitis, Colias, Papilio, &c. Burmeister, in his recently published “Lépidoptères de la République Argentine,” figures the young stages of species of Caligo, Opsiphanes, Callidryas, Philampelus, &c. Messrs. Hellins and Buckler have figured and described the early stages of large numbers of the caterpillars of British Lepidoptera, but their figures remain unpublished. The larvæ of many of our native species belonging to the genera Liparis, Tæniocampa, Epunda, Cymatophora, Calocampa, &c., are dull when young, but become brightly coloured at the last moult. Such changes of colour are probably associated with some change, either in the habits or in the environment; and a careful study of the ontogenetic development of such species in connection with their life-history would furnish results of great value to the present inquiry. The same remarks apply to those Noctuæ larvæ which are brightly coloured in their young stages, and become dull when adult.Among other papers which may be considered as contributions to the present subject, I may mention the following: – In 1864 Capt. Hutton published a paper, “On the Reversion and Restoration of the Silkworm, Part II.” (Trans. Ent. Soc. 1864, p. 295), in which he describes the various stages of development of several species of Bombycidæ. In 1867 G. Semper published accounts of the early stages of several Sphinx-larvæ (“Beiträge zur Entwicklungsgeschichte einiger ostasiatischer Schmetterlinge,” Verhandl. k.k. Zoolog. – botan. Gesell. in Wien, vol. xvii.). The question as to the number of claspers in young Noctuæ larvæ has been raised in notes by Dr. F. Buchanan White (“Ent. Mo. Mag.,” vol. v. p. 204) and B. Lockyer (“Entomologist,” 1871, p. 433). A valuable paper, “On the Embryonic Larvæ of Butterflies,” was published in 1871 by S. H. Scudder (“Ent. Mo. Mag.,” vol. viii. p. 122). For remarks on the development of the larva of Papilio Merope, see J. P. Mansel Weale in Trans. Ent. Soc., 1874, p. 131, and Pl. I.; also this author on the young stages of the larva of Gynanisa Isis, Trans. Ent. Soc., 1878, p. 184. For an account of the development of the larvæ of certain North American species of Satyrus, see W. H. Edwards in the “Canadian Entom.,” vol. xii. p. 21. Mr. P. H. Gosse’s recent description of the newly hatched caterpillar of Papilio Homerus (Proc. Ent. Soc. 1879, p. lv), furnishes a good illustration of the value of studying the ontogeny. The natural affinities of the Papilionidæ were at one time much disputed, some systematists placing this family at the head of the Lepidoptera, and others regarding them as being more closely allied to the moths. Mr. Gosse’s observation tends to confirm the latter view, now generally received by Lepidopterists, since he states that the larva in question “suggests one of the great Saturniadæ, such as Samia Cecropia.” Mr. Scudder, in the paper above referred to, adopts an analogous argument to show the close relationship between the Papilionidæ and Hesperidæ. R.M.]] When, however, we consider that in these young caterpillars we have preserved to us the parent-form, extinct for centuries, of the existing species of Papilio, it must assuredly be of the greatest interest to become accurately acquainted with them, to compare them with the earliest stages of allied species, and to follow the gradual divergence of the succeeding stages in different directions, thus forming a picture of the phyletic development of an evolving group. In the course of such observations numerous collateral results would doubtless come out. Investigations of this kind, whether conducted on this or on any other group, would, above all, show the true systematic affinities of the forms, i. e., their genealogical affinities, and that in a better way than could be shown by the morphology of the perfect insects or the adult caterpillars alone. If I am diffident in founding these conclusions upon the development of the Sphinx-markings treated of in the present essay, this arises entirely from a knowledge of the imperfections in the basis of facts. If however, through the united labours of many investigators, the individual development of all the species of Sphingidæ now existing should at some future period be clearly laid before us, we should then not only have arrived at a knowledge of the relative ages of the different species, genera and families, but we should also arrive at an explanation of the nature of their affinities.

It is erroneous to assert that Classification has only to take form-relationship into consideration; that it should and can be nothing else than the expression of form-relationship. The latter is certainly our only measure of blood-relationship, but those who maintain the assertion that form- and blood-relationship are by no means always synonymous, are undoubtedly correct. I shall in a future essay adduce facts which leave no doubt on this point, and which prove at the same time that modern systematists – especially in the order Lepidoptera – have always endeavoured – although quite unconsciously – to make the blood-relationship the basis of their classification. For this reason alone, larvæ and pupæ would have an important bearing upon the establishment of systematic groups, although certainly in a manner frequently irregular.

It must be admitted that so long as we are able to compare the species of one group with those of another in one form only, we are often unable to ascertain the blood-relationship.[68 - [Mr. A. G. Butler has recently furnished a good illustration of the danger of classifying Lepidoptera according to the affinities of the perfect insects only, in his paper, “On the Natural Affinities of the Lepidoptera hitherto referred to the Genus Acronycta of authors,” Trans. Ent. Soc. 1879, p. 313. If the author’s views are ultimately accepted, the species at present grouped under this genus will be distributed among the Arctiidæ, Liparidæ, Notodontidæ, and Noctuæ. Mr. Butler’s determination of the affinities of the species supposed to belong to the genus mentioned, is based chiefly upon a comparative examination of the larvæ, and this is far more likely to show the true blood-relationship of the species than a comparison of the perfect insects only. A study of the comparative ontogeny can alone give a final answer to this question. R.M.]] In such cases we can only determine the latter from the form-relationship, and as these are not always parallel, any conclusion based on a single form must be very unsound. If, for instance, butterflies emerged from the egg directly, without passing through any larval stage, a comparison of their resemblances of form would alone be of systematic value; we should unite them into groups on the ground of these resemblances only, and the formation of these groups would then much depend upon the weight assigned to this or that character. We might thus fall into error, not only through a different valuation of characters but still more because two species of near blood-relationship frequently differ from one another in form to a greater extent than from other species. We should have no warrant that our conception of the form-relationship expressed the genealogical connection of the species. But it would be quite different if every species presented itself in two or three different forms. If in two species or genera the butterflies as well as the larvæ and pupæ exhibited the same degree of form-relationship, the probability that this expressed also the blood-relationship would then be exceedingly great. Now this agreement certainly does not always occur, and when these different stages are related in form in unequal degrees, the problem then is to decide which of these relationships expresses the genealogy. This decision may be difficult to arrive at in single cases, since the caterpillar may diverge in form from the next blood-related species to a greater extent than the butterfly, or, conversely, the butterfly may diverge more widely from its nearest blood-related species than the caterpillar.

For such cases there remains the developmental history of the caterpillar, which will almost always furnish us to a certain extent with information respecting the true genealogical relationship of the forms, because it always reveals a portion of the phyletic (ancestral) development of the species. If we see two species of butterflies quite dissimilar in form of wing and other characters, we should be inclined, in spite of many points of agreement between them, to place them in entirely different genera. But should we then find that not only did their adult larvæ agree in every detail of marking, but also that the entire phyletic development of these markings, as revealed by the ontogeny of the larvæ, had taken precisely the same course in both species, we should certainly conclude that they possessed a near blood-relationship, and should place them close together in the same genus. Such an instance is afforded by the two Hawk-moths, Chærocampa Elpenor and C. Porcellus, as will appear in the course of these investigations. These two species were placed by Walker in different genera, the form-relationship of the imagines being thus correctly represented, since Porcellus (imago), is indeed more nearly related in form to the species of the genus Pergesa, Walker, than to those of the genus Chærocampa.[69 - [In his recent revision of the Sphingidæ, Mr. A. G. Butler (Trans. Zoo. Soc., vol. ix. part x.) retains Walker’s arrangement. R.M.]] Nevertheless, these species must remain in the same genus, as no other arrangement expresses their degree of blood-relationship.

An intimate knowledge of the development-stages of caterpillars thus offers, even from a systematic point of view, an invaluable means of judging the degree of blood-relationship, and from this standpoint we must regard the study of the caterpillar as of more importance than that of the perfect insect. Certainly all groups would not be so rich in information as the Sphingidæ, or, as I am inclined to believe, the Papilionidæ, since all families of caterpillars do not possess such a marked and diversified pattern, nor do they present such a varied and characteristic bodily form. The representation of the true, i. e., the blood-relationship, and through this the formation of natural groups with any completeness, can certainly only be looked for when we are intimately acquainted with the different stages of development of the larvæ of numerous species in every group, from their emergence from the egg to their period of pupation. The genealogical relationship of many forms at present of doubtful systematic position would then be made clear. This investigation, however, could not be the work of a single individual; not only because the materials for observation are too great, but, above all, because they are spread over too wide a field. It is not sufficient to study the European types only – we should endeavour to learn as much as possible of the Lepidoptera of the whole world. But such observations can only be made on the spot. Why should it not be possible to trace the development from the egg, even under a tropical sky, and to devote to breeding and observing, a portion of that time which is generally spent in mere collecting? I may perhaps be able to convince some of the many excellent and careful observers among entomologists, that beyond the necessary and valuable search for new forms, there is another field which may be successfully worked, viz., the precise investigation of the development of known species.

The first portion of the present essay consists of the determination of this development in those species of Sphingidæ which have been accessible to me. Seven genera are successively treated of, some completely, and others only in some of their stages; and thus I have sought to present a picture of the course of development of the markings in each genus, by comparing the species with each other, and with allied forms in cases where the young stages were unknown. In this portion, as far as possible, the facts only have been given, the working up of the latter into general conclusions upon the development of marking being reserved for the second portion. A complete separation of facts from generalizations could not, however, be carried out; it appeared convenient to close the account of each genus with a summary of the results obtained from the various species.

After having established that the markings of the Sphinx-caterpillars had undergone an extremely gradual phyletic development, conformable to law, in certain fixed directions, it appeared desirable to investigate the causes of the first appearance of these markings, as well as of their subsequent development. The question as to the biological significance of marking here presented itself in the first place for solution, and the third section is devoted to this subject. If it is maintained that marking is of no importance to the life of the insect, or that it is so only exceptionally, and that it is in reality, as it appears to be, a character of purely morphological, i. e., physiological, insignificance, then its striking phylogenetic development conformable to law cannot be explained by any of the known factors of species transformation, and we should have to assume the action of an innate transforming power. In the present investigations, this subject in particular has been extensively treated of, and not only the markings of Sphinx-caterpillars, but also those of caterpillars in general, have been taken into consideration. The results arrived at are indeed quite opposed to this assumption – marking is shown to be a character of extreme importance to the life of the species, and the admission of a phyletic vital force must, at least from the present point of view, be excluded. This leads to the fifth section, in which I have attempted to test certain objections to the admission of a “phyletic vital force.” The sixth section finally gives a summary of the results obtained.

I may now add a few explanations which are necessary for understanding the subsequent descriptions. It was found impossible to avoid the introduction of some new technicalities for describing the various elements of larval markings, especially as the latter had to be treated of scientifically. I have therefore chosen the simplest and most obvious designations, all of which have already been employed by various authors, but not in any rigorously defined sense. I understand by the “dorsal line” that which runs down the middle of the back; the lines above and below the spiracles will be respectively distinguished as the “supra-” and “infra-spiracular” lines, and the line between the dorsal and spiracular as the “subdorsal line.” The distinction between “ring-spots” and “eye-spots” will be made manifest in the course of the investigation. A glance at any of the existing descriptions of larvæ will show how necessary it was to introduce a precise terminology. Even when the latter is exact as far as it goes, the want of precise expressions not only makes the descriptions unnecessarily long, but it also considerably increases the difficulty of comparing one species with another, since we can never be sure whether the same designation applies to the same homologous character. For instance, when the larva of Chærocampa Elpenor is said to have “a light longitudinal line on the sides of the thoracic segments,” this statement is indeed correct; but it is not apparent whether the line is above or below, and consequently it does not appear whether it is the equivalent of the longitudinal line “on the sides” of the segments in other species. If, however, it is said that this line is “subdorsal on the thoracic segments, and on the eleventh abdominal segment,” it is thereby indicated that we have here a residue of the same marking which is found completely developed in many other Sphinx-larvæ, and indeed in the young stages of this same species. The mode of describing caterpillars hitherto in vogue is in fact unscientific; the descriptions have not been made with a view to determining the morphology of the larvæ, but simply to meet the practical want of being able to readily identify any species that may be found: even for this purpose, however, it would have been better to have employed a more precise mode of description.

I. Ontogeny and Morphology of Sphinx-Markings

THE GENUS CHÆROCAMPA, DUPONCHEL

Although by no means in favour of the excessive subdivision of genera, I am of opinion that Ochsenheimer’s genus Deilephila has been correctly separated by Duponchel into the two genera Chærocampa and Deilephila, sensû strictiori. Such a division may appear but little necessary if we examine the perfect insects only; but the developmental history of the caterpillars shows that there is a wide division between the two groups of species, these groups however being branches of one stem.

Chærocampa Elpenor, Linn

Some captured females laid single eggs sparsely on grass, wood, and especially on the tarlatan with which the breeding-cage was covered. The eggs are nearly spherical, but somewhat compressed, of a grass-green colour, a little lighter, and somewhat larger (1.2 millim.) than those of Deilephila Euphorbiæ. During the development of the embryo the eggs first became yellowish-green, and finally yellowish.

First Stage
<< 1 ... 4 5 6 7 8 9 10 11 12 ... 25 >>
На страницу:
8 из 25