– В нашей школе, – начал пионер, – имеется 5 кружков: политкружок, военный, фотографический, шахматный и хоровой. Политкружок занимается через день, военный – через 2 дня на 3-й, фотографический – каждый 4-й день, шахматный – каждый 5-й день и хоровой – каждый 6-й день. 1 января собрались в школе все 5 кружков, а затем занятия велись в назначенные по плану дни, без отступлений от расписания. Вопрос состоит в том, сколько в первом квартале было ещё вечеров, когда собирались в школе все 5 кружков.
– А год был простой или високосный? – осведомились у пионера.
– Простой.
– Значит, первый квартал – январь, февраль, март – надо считать за 90 дней?
– Очевидно.
– Позвольте к вопросу вашей головоломки присоединить ещё один, – сказал профессор. – А именно: сколько в том же квартале года было таких вечеров, когда кружковых занятий в школе вовсе не происходило?
– Ага, понимаю! – раздался возглас. – Задача с подвохом. Ни одного дня не будет больше с 5 кружками и ни одного дня без всяких кружков. Это уж ясно!
– Почему? – спросил председатель.
– Объяснить не могу, но чувствую, что отгадчика хотят поймать впросак.
– Ну, это не довод. Вечером выяснится, правильно ли ваше предчувствие. За вами очередь, товарищ!
4. Кто больше?
– Двое считали в течение часа всех, кто проходил мимо них на тротуаре. Один стоял у ворот дома, другой прохаживался взад и вперёд по тротуару. Кто насчитал больше прохожих?
– Идя, больше насчитаешь, ясное дело, – донеслось с другого конца стола.
– Ответ узнаем за ужином, – объявил председатель. – Следующий!
5. Дед и внук
– То, о чём я скажу, происходило в 1932 году. Мне было тогда ровно столько лет, сколько выражают последние две цифры года моего рождения. Когда я об этом соотношении рассказал деду, он удивил меня заявлением, что с его возрастом выходит то же самое. Мне это показалось невозможным…
– Разумеется, невозможно, – вставил чей-то голос.
– Представьте, что вполне возможно. Дед доказал мне это. Сколько же лет было каждому из нас?
Рис. 3. «Продаю железнодорожные билеты»
6. Железнодорожные билеты
– Я – железнодорожная кассирша, продаю билеты, – начала следующая участница игры. – Многим это кажется очень простым делом. Не подозревают, с каким большим числом билетов приходится иметь дело кассиру даже маленькой станции. Ведь необходимо, чтобы пассажиры могли получить билеты от данной станции до любой другой на той же дороге, притом в обоих направлениях. Я служу на дороге с 25 станциями. Сколько же, по-вашему, различных образцов билетов заготовлено железной дорогой для всех её касс?
– Ваша очередь, товарищ лётчик, – провозгласил председатель.
7. Полёт дирижабля
– Из Ленинграда вылетел прямо на север дирижабль. Пролетев в северном направлении 500 км, он повернул на восток. Пролетев в эту сторону 500 км, дирижабль сделал новый поворот – на юг и прошёл в южном направлении 500 км. Затем он повернул на запад и, пролетев 500 км, опустился на землю. Спрашивается: где расположено место спуска дирижабля относительно Ленинграда – к западу, к востоку, к северу или к югу?
– На простака рассчитываете, – сказал кто-то. – 500 шагов вперёд, 500 вправо, 500 назад да 500 влево – куда придём? Откуда вышли, туда и придём!
– Итак, где, по-вашему, спустился дирижабль?
– На том же ленинградском аэродроме, откуда поднялся. Не так разве?
– Именно не так.
– В таком случае я ничего не понимаю!
– В самом деле, здесь что-то неладно, – вступил в разговор сосед. – Разве дирижабль спустился не в Ленинграде?.. Нельзя ли повторить задачу?
Лётчик охотно исполнил просьбу. Его внимательно выслушали и с недоумением переглянулись.
– Ладно, – объявил председатель. – До ужина успеем подумать об этой задаче, а сейчас будем продолжать.
8. Тень
– Позвольте мне, – сказал очередной загадчик, – взять сюжетом головоломки тот же дирижабль. Что длиннее: дирижабль или его полная тень?
– В этом и вся головоломка?
– Вся.
– Тень, конечно, длиннее дирижабля: ведь лучи солнца расходятся веером, – последовало сразу решение.
– Я бы сказал, – возразил кто-то, – что, напротив, лучи солнца параллельны; тень и дирижабль одной длины.
– Что вы? Разве не случалось вам видеть расходящиеся лучи от спрятанного за облаком солнца? Тогда можно воочию убедиться, как сильно расходятся солнечные лучи. Тень дирижабля должна быть значительно больше дирижабля, как тень облака больше самого облака.
Рис. 4. Расходящиеся лучи от спрятанного за облаком солнца
– Почему же обычно принимают, что лучи солнца параллельны? Моряки, астрономы – все так считают…
Председатель не дал спору разгореться и предоставил слово следующему загадчику.
9. Задача со спичками
Очередной оратор высыпал на стол все спички из коробка и стал распределять их в три кучки.
– Костёр собираетесь раскладывать? – шутили слушатели.
– Головоломка, – объяснил загадчик, – будет со спичками. Вот их три неравные кучки. Во всех вместе 48 штук. Сколько в каждой, я вам не сообщаю. Зато отметьте следующее: если из первой кучи я переложу во вторую столько спичек, сколько в этой второй куче имелось, затем из второй в третью переложу столько, сколько в этой третьей перед тем будет находиться, и, наконец, из третьей переложу в первую столько спичек, сколько в этой первой куче будет тогда иметься, – если, говорю, всё это проделать, то число спичек во всех кучках станет одинаково. Сколько же было в каждой кучке первоначально?
10. Коварный пень
– Головоломка эта, – начал сосед последнего загадчика, – напоминает задачу, которую давно как-то задал мне деревенский математик. Это был целый рассказ, довольно забавный. Повстречал крестьянин в лесу незнакомого старика. Разговорились. Старик внимательно оглядел крестьянина и сказал:
– Известен мне в леску этом пенёчек один удивительный. Очень в нужде помогает.
– Как помогает? Вылечивает?